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Gauss quadrature formula (Gauss 1814)

Let dσ be a (nonnegative) measure on the interval [a, b], and∫ b

a

f(t)dσ(t) =
n∑
ν=1

λνf(τν) +RG
n (f), (1)

where:

• The τν = τ
(n)
ν are the zeros of the nth degree (monic) orthogonal polynomial

πn(·) = πn(·; dσ), hence, they are all in (a, b).

• The λν = λ
(n)
ν are all positive.

• Formula (1) has precise degree of exactness dGn = 2n− 1, i.e., RG
n (f) = 0 for all

f ∈ P2n−1.
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Methods for studying the error term RG
n

• Peano kernel methods
Given that RG

n (f) = 0 for all f ∈ Ps−1, if f has a piecewise continuous derivative
of order s on [a, b] (or, less restrictively, f (s−1) is absolutely continuous on [a, b]),
then, by the Peano representation theorem,

|RG
n (f)| ≤ cs max

a≤t≤b
|f (s)(t)|, cs =

∫ b

a

|Ks(t)|dt, s = 1, 2, . . . , dGn + 1,

where Ks is the s-th Peano kernel of RG
n .

For s = dGn + 1 = 2n, we have c2n = [(2n)!]−1 ∫ b
a
π2
n(t)dσ(t).

Task: Compute or estimate
∫ b
a
|Ks(t)|dt, even asymptotically.

• Contour integration methods
If f is single-valued holomorphic in a domain D, Γ is a contour in D surrounding
[a, b] and `(Γ) is the length of Γ, then

|RG
n (f)| ≤ `(Γ)

2π
max
z∈Γ
|K̃n(z)|max

z∈Γ
|f(z)|,

where K̃ is the kernel of RG
n .

Task: Compute or estimate maxz∈Γ |K̃n(z)|.

• Hilbert space techniques
If f is single-valued holomorphic in a domain D and H = H(D) is a Hilbert
space, then RG

n is a bounded linear functional in H and

|RG
n (f)| ≤ ‖RG

n ‖‖f‖,

where ‖RG
n ‖ is the norm of the error functional RG

n and ‖f‖ is the norm of f in
the Hilbert space H.
Task: Compute or estimate ‖RG

n ‖.
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W. Gautschi, A survey of Gauss-Christoffel quadrature formulae, in E.B. Christof-
fel: The influence of his work on mathematics and the physical sciences, P.L. Butzer
and F. Fehér, eds., Birkhäuser, Basel, 1981, pp. 72-147.

What can we do if the smoothness of f is quite low of if we have no information on
the smoothness of f?
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Practical error estimator

Let I(f) =
∫ b
a
f(t)dσ(t), QG

n (f) =
∑n

ν=1 λνf(τν) and consider a quadrature formula
with m > n points, quadrature sum Qm(f) and degree of exactness greater than
2n− 1. Then, we write

|RG
n (f)| ' |QG

n (f)−Qm(f)|, (2)

i.e., Qm(f) plays the role of the “true” value of I(f).

As the Gauss formula has optimal degree of exactness for an n-point quadrature for-
mula, the smallest value for m = n+ 1.

So, what is an appropriate m-point formula?
In particular, using the already known f(τν), ν = 1, 2, . . . , n, can we find a quadrature
formula of the highest possible degree of exactness by allowing n+ 1 additional eval-
uations of the function, i.e., a quadrature formula which uses the τν , ν = 1, 2, . . . , n,
and, in addition, n+ 1 new points τ ∗µ, µ = 1, 2, . . . , n+ 1?
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Gauss-Kronrod quadrature formula (Kronrod 1964)

Let dσ be a (nonnegative) measure on the interval [a, b], and∫ b

a

f(t)dσ(t) =
n∑
ν=1

σνf(τν) +
n+1∑
µ=1

σ∗µf(τ ∗µ) +RK
n (f), (3)

where:

• The τν are the Gauss nodes.

• The τ ∗µ = τ
∗(n)
µ , σν = σ

(n)
ν , σ∗µ = σ

∗(n)
µ are chosen such that formula (3) has

maximum degree of exactness.

• Formula (3) has degree of exactness (at least) dKn = 3n+ 1.

Desirable properties:

• The nodes τ ∗µ, µ = 1, 2, . . . , n + 1, are all real and interlace with the nodes
τν , ν = 1, 2, . . . , n, of the Gauss formula, that is,

τ ∗n+1 < τn < τ ∗n < · · · < τ ∗2 < τ1 < τ ∗1 .

• The nodes τ ∗µ, µ = 1, 2, . . . , n+ 1, are all contained in [a, b].

• The weights σν , ν = 1, 2, . . . , n, σ∗µ, µ = 1, 2, . . . , n+ 1, are all positive.

The QK
n (f) =

∑n
ν=1 σνf(τν) +

∑n+1
µ=1 σ

∗
µf(τ ∗µ) can be used in place of Qm(f) in (2).

Advantage: With n + 1 new evaluations of the function (at the τ ∗µ) the degree of
exactness is raised from 2n− 1 to (at least) 3n+ 1.
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Stieltjes polynomial (Stieltjes 1894)

The Kronrod nodes τ ∗µ are zeros of a polynomial π∗n+1(·) = π∗n+1(·; dσ), discovered by
Stieltjes, through his work on continued fractions and the moment problem, which is
characterized and can be uniquely defined by the orthogonality condition∫ b

a

π∗n+1(t)tkπn(t)dσ(t) = 0, k = 0, 1, . . . , n,

i.e., π∗n+1 is orthogonal to all polynomials of lower degree relative to the variable-sign
measure dσ∗(t) = πn(t)dσ(t) on [a, b].

In view of the above, the Stieltjes polynomial π∗n+1 might have complex zeros, in which
case the corresponding Gauss-Kronrod formula fails to exist, with real and distinct
nodes in the interval of integration and positive weights. Unfortunately, this happens
for several of the classical measures:

• For the Gegenbauer measure dσλ(t) = (1 − t2)λ−1/2dt on [−1, 1], λ > −1/2,
when λ > 3 and n sufficiently large.

• For the Jacobi measure dσα,β(t) = (1−t)α(1+t)βdt on [−1, 1], α, β > −1, when
min(α, β) ≥ 0 and max(α, β) > 5/2 and n sufficiently large.

• For the Hermite measure dσH(t) = e−t
2
dt on (−∞,∞).

• For the Laguerre measure dσ(α)(t) = tαe−tdt on (0,∞), α > −1, when −1 <

α ≤ 1, and n sufficiently large.
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We have positive results, i.e., the Gauss-Kronrod formula exists with real and dis-
tinct nodes in the interval of integration and positive weights, for several nonclassical
measures, in particular, the Bernstein-Szegö mesures, which are defined by

dσ(±1/2)(t) =
(1− t2)±1/2

ρ(t)
dt, −1 < t < 1,

dσ(±1/2,∓1/2)(t) =
(1− t)±1/2(1 + t)∓1/2

ρ(t)
dt, −1 < t < 1,

where ρ is an arbitrary polynomial that remains positive on [−1, 1].

S.N., Gauss-Kronrod quadrature formulae - A survey of fifty years of research, Elec-
tron. Trans. Numer. Anal., v. 45, 2016, pp. 371–404.

So, what can we do in those cases that the Gauss-Kronrod formula fails to exist?
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Anti-Gaussian quadrature formula (Laurie 1996)

Let dσ be a (nonnegative) measure on the interval [a, b], and∫ b

a

f(t)dσ(t) =
n+1∑
µ=1

wµf(tµ) +RAG
n+1(f), (4)

which is designed to have an error precisely opposite to the error of the Gauss formula,
that is, if

QAG
n+1(f) =

n+1∑
µ=1

wµf(tµ),

then
RAG
n+1(p) = −RG

n (p) for all p ∈ P2n+1,

i.e.,
I(p)−QAG

n+1(p) = −[I(p)−QG
n (p)] for all p ∈ P2n+1.

The anti-Gaussian formula has the following properties:

• The nodes tµ, µ = 1, 2, . . . , n+ 1, are zeros of the polynomial

πAGn+1(t) = πn+1(t)− βnπn−1(t),

where βn are the coefficients in the three-term recurrence relation for the or-
thogonal polynomials πn.

• The nodes tµ, µ = 1, 2, . . . , n + 1, are all real and interlace with the nodes
τν , ν = 1, 2, . . . , n, of the Gauss formula.

• The nodes tµ, µ = 2, 3, . . . , n, are all contained in [a, b].

• The node tn+1 ∈ [a, b] if and only if πn+1(a)
πn−1(a)

≥ βn, and the node t1 ∈ [a, b] if and
only if πn+1(b)

πn−1(b)
≥ βn.

• The weights wµ, µ = 1, 2, . . . , n+ 1, are all positive.

• The anti-Gaussian formula can easily be constructed.
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Averaged Gaussian quadrature formula (Laurie 1996)

This is the (2n+ 1)-point quadrature formula obtained by the quadrature sum

QAvG
2n+1(f) =

1

2
(QG

n (f) +QAG
n+1(f)). (5)

This formula has degree of exactness (at least) 2n+ 1.

The QAvG
2n+1(f) can be used in place of Qm(f) in (2).

Advantage: With n + 1 new evaluations of the function (at the tµ) the degree of
exactness is raised from 2n− 1 to (at least) 2n+ 1.
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Comparison between Gauss-Kronrod formula and averaged Gaussian for-
mula

• The Gauss-Kronrod formula does not always exist with the desirable properties,
but whenever it does exist its degree of exactness is (at least) 3n+ 1.

• The averaged Gaussian formula does always exist with the desirable properties,
but the degree of exactness is (at least) 2n+ 1.

• Can we have a formula that combines the advantages of both the Gauss-Kronrod
formula and the averaged Gaussian formula, i.e., a formula having the desirable
properties as well as degree of exactness (at least) 3n+ 1?

• Is it possible for a measure dσ on [a, b] to get the same error estimate for
the Gauss formula by using either the Gauss-Kronrod formula or the averaged
Gaussian formula, i.e., a measure dσ on [a, b] for which the Gauss-Kronrod
formula coincides with the averaged Gaussian formula?

11



Measures with constant recurrence coefficients (Gautschi and N. 1996)

Let the (monic) orthogonal polynomials relative to a (nonnegative) measure dσ satisfy
a three-term recurrence relation of the form,

πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

αn = α, βn = β for all n ≥ `,

where αn ∈ R, βn > 0, ` ∈ N, and π0(t) = 1, π−1(t) = 0. Any such measure dσ is
known to be supported on a finite interval, say [a, b] (Chihara 1978; Mate, Nevai
and VanAssche 1991). We write dσ ∈M(α,β)

` [a, b].

Among the many orthogonal polynomials satisfying a recurrence relation of this
kind are the four Chebyshev-type polynomials, as well as those associated with the
Bernstein-Szegö measures.

If dσ ∈ M(α,β)
` [a, b], then trivially αn → α, βn → β as n → ∞, and it follows

(Chihara 1978) that
[α− 2

√
β, α + 2

√
β ] (6)

is the “limiting spectral interval” of dσ. Although dσ might has support points outside
the interval (6), for inclusion results we will assume the following property.

Property A The measure dσ ∈M(α,β)
` [a, b] is such that

a = α− 2
√
β, b = α + 2

√
β.

12



Gauss-Kronrod formulae for measures with constant recurrence coeffi-
cients (Gautschi and N. 1996)

Theorem 1 Consider a measure dσ ∈M(α,β)
` [a, b]. Then the corresponding Stieltjes

polynomials are given by

π∗n+1(t) = πn+1(t)− βπn−1(t) for all n ≥ 2`− 1.

Proposition 2 Consider a measure dσ ∈ M(α,β)
` [a, b] and let τν be the zeros of the

corresponding orthogonal polynomial πn. Then

πn+1(τν) =
1

2
π∗n+1(τν), ν = 1, 2, . . . , n,

for all n ≥ 2`− 1.

Theorem 3 Consider a measure dσ ∈M(α,β)
` [a, b]. Then the following holds:

(a) The Gauss-Kronrod formula (3) has the interlacing property for all n ≥ 2`−1,
that is,

τ ∗n+1 < τn < τ ∗n < · · · < τ ∗2 < τ1 < τ ∗1 . (7)

(b) If dσ has Property A, then all τ ∗µ are in [a, b] for all n ≥ 2`− 1.
(c) All weights σν , σ∗µ in formula (3) are positive for each n ≥ 2`−1. In particular,

σν =
1

2
λν , ν = 1, 2, . . . , n,

where λν , ν = 1, 2, . . . , n, are the weights in the Gauss formula (1).
(d) Formula (3) has degree of exactness (at least) 4n− 2`+ 2 if n ≥ 2`− 1.
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Anti-Gaussian and averaged Gaussian formulae for measures with constant
recurrence coefficients (Spalević 2017, N. 2018)

Theorem 4 Consider a measure dσ ∈M(α,β)
` [a, b]. Then the following holds:

(a) The anti-Gaussian formula (4) for all n ≥ 2`− 1 is given by

tµ = τ ∗µ, wµ = 2σ∗µ, µ = 1, 2, . . . , n+ 1,

where τ ∗µ are the Stieltjes nodes and σ∗µ the corresponding weights in the respective
Gauss-Kronrod formula (3).

(b) The averaged Gaussian formula obtained by the quadrature sum (5) for all
n ≥ 2` − 1 gives the same error estimate for RG

n (f) as the Gauss-Kronrod formula
(3), that is,

|RG
n (f)| ' |QG

n (f)−QK
n (f)| = |QG

n (f)−QAvG
2n+1(f)| =

|QG
n (f)−QAG

n+1(f)|
2

.

(c) The averaged Gaussian formula obtained by the quadrature sum (5) for all
n ≥ 2`− 1 has degree of exactness (at least) 4n− 2`+ 2.
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Modified anti-Gaussian quadrature formula (Calvetti and Reichel 2003)

Let dσ be a (nonnegative) measure on the interval [a, b], and∫ b

a

f(t)dσ(t) =
n+1∑
µ=1

wµf(tµ) +RMAG
n+1 (f), (8)

which, if

QMAG
n+1 (f) =

n+1∑
µ=1

wµf(tµ),

is designed such that

RAG
n+1(p) = −γRG

n (p) for all p ∈ P2n+1, γ > 0,

i.e.,
I(p)−QAG

n+1(p) = −γ[I(p)−QG
n (p)] for all p ∈ P2n+1, γ > 0.

Generalized averaged Gaussian quadrature formula (Spalević 2007)

This is the (2n+ 1)-point quadrature formula obtained by the quadrature sum

QGAvG
2n+1 (f) =

1

1 + γ
(γQG

n (f) +QMAG
n+1 (f)), γ > 0. (9)
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Theorem 5 (N. 2018) Let the (nonnegative) measure dσ on the interval [a, b], and
assume that the respective orthogonal polynomial πn+1(·) = πn+1(·; dσ) and Stieltjes
polynomial π∗n+1(·) = π∗n+1(·; dσ) satisfy

πn+1(τν) =
1

1 + γ
π∗n+1(τν), ν = 1, 2, . . . , n, γ > 0,

where τν , ν = 1, 2, . . . , n, are the zeros of the orthogonal polynomial πn(·) = πn(·; dσ).
Then the following hold:

(a) The Gauss-Kronrod formula (3) has the interlacing property (7) and all weights
σν , ν = 1, 2, . . . , n, σ∗µ, µ = 1, 2, . . . , n+ 1, are positive.

(b) The modified anti-Gaussian formula (8) is given by

tµ = τ ∗µ, wµ = (1 + γ)σ∗µ, µ = 1, 2, . . . , n+ 1, γ > 0.

(c) The generalized averaged Gaussian formula (9) gives the same error estimate
for RG

n (f) as the Gauss-Kronrod formula (3), that is,

|RG
n (f)| ' |QG

n (f)−QK
n (f)| = |QG

n (f)−QGAvG
2n+1 (f)| = 1

1 + γ
|QG

n (f)−QMAG
n+1 (f)|, γ > 0.

(d) The generalized averaged Gaussian formula obtained by the quadrature sum
(9) has degree of exactness (at least) 3n+ 1.
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Measures with constant recurrence coefficients extended (N. submitted)

Let the (monic) orthogonal polynomials relative to a (nonnegative) measure dσ satisfy
a three-term recurrence relation of the form,

πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

αn =

{
αe, n even,
αo, n odd,

βn = β for n ≥ `,

where αn ∈ R, βn > 0, ` ∈ N, and π0(t) = 1, π−1(t) = 0. Any such measure dσ
is known to be supported on a finite interval, say [a, b] (Chihara 1978). We write
dσ ∈M(αe,αo,β)

` [a, b].

If dσ ∈ M(αe,αo,β)
` [a, b], then trivially α2n → αe, α2n−1 → αo and βn → β as n→∞,

and it follows (Chihara 1978) that[
αe + αo −

√
(αe − αo)2 + 16β

2
, a∗

]
∪

[
b∗,

αe + αo +
√

(αe − αo)2 + 16β

2

]
,

a∗ = min (αe, αo), b∗ = max (αe, αo),

(10)

is the “limiting spectral interval” of dσ. Although dσ might has support points outside
the interval (10), for inclusion results we will assume the following property.

Property Ae The measure dσ ∈M(αe,αo,β)
` [a, b] is such that

a =
αe + αo −

√
(αe − αo)2 + 16β

2
, b =

αe + αo +
√

(αe − αo)2 + 16β

2
.
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Gauss-Kronrod formulae for measures with constant recurrence coeffi-
cients extended (N. submitted)

Theorem 6 Consider a measure dσ ∈M(αe,αo,β)
` [a, b]. Then the corresponding Stielt-

jes polynomials are given by

π∗n+1(t) = πn+1(t)− βπn−1(t) for all n ≥ 2`− 1. (11)

Are there any other measures, besides those in the classM(αe,αo,β)
` [a, b], for which the

corresponding Stieltjes polynomials are given by (11)?
Theorem 7 Consider a (nonnegative) measure dσ on the interval [a, b], and let the
respective monic orthogonal polynomials πn( · ) = πn( · ; dσ) satisfy a three-term re-
currence relation of the form

πn+1(t) = (t− αn)πn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

π0(t) = 1, π−1(t) = 0,

where αn = αn(dσ) ∈ R and βn = βn(dσ) > 0. If the corresponding monic Stieltjes
polynomial π∗n+1( · ) = π∗n+1( · ; dσ) is given by

π∗n+1(t) = πn+1(t)− β̂πn−1(t) for n ≥ 2`− 1,

where β̂ > 0, then
αn = αn+2 for n ≥ 2`− 2,

βn = β̂ for n ≥ 2`.

The first of these relations immediately leads to

αn =

{
α̂e, n even,
α̂o, n odd,

n ≥ 2`− 2.
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Proposition 8 Consider a measure dσ ∈ M(αe,αo,β)
` [a, b] and let τν be the zeros of

the corresponding orthogonal polynomial πn. Then

πn+1(τν) =
1

2
π∗n+1(τν), ν = 1, 2, . . . , n, (12)

for all n ≥ 2`− 1.

Are there any other measures, besides those in the class M(αe,αo,β)
` [a, b], for which

the corresponding Stieltjes polynomials satisfy a functional relation of the form (12)
(which is of even broader scope than (11))?
Theorem 9 Consider a (nonnegative) measure dσ on the interval [a, b], and assume
that the respective monic orthogonal polynomial πn+1( · ) = πn+1( · ; dσ) and monic
Stieltjes polynomial π∗n+1( · ) = π∗n+1( · ; dσ), both of degree n+ 1, satisfy, at the zeros
τν of the nth degree monic orthogonal polynomial πn( · ) = πn( · ; dσ), the functional
relation (12) for all n ≥ 2` − 1. Then, for the coefficients αn = αn(dσ) ∈ R and
βn = βn(dσ) > 0 of the three-term recurrence relation for the πn’s, there hold

αn = αn+2 for n ≥ 2`− 2,

βn = βn+1 for n ≥ 2`− 1.

From this, there immediately follows that

αn =

{
α̂e, n even,
α̂o, n odd,

n ≥ 2`− 2,

βn = β̂, n ≥ 2`− 1.
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Theorem 10 Consider a measure dσ ∈M(αe,αo,β)
` [a, b]. Then the following holds:

(a) The Gauss-Kronrod formula (3) has the interlacing property for all n ≥ 2`−1,
that is,

τ ∗n+1 < τn < τ ∗n < · · · < τ ∗2 < τ1 < τ ∗1 .

(b) If dσ has Property Ae, then all τ ∗µ are in [a, b] for all n ≥ 2`− 1.
(c) All weights σν , σ∗µ in formula (3) are positive for each n ≥ 2`−1. In particular,

σν =
1

2
λν , ν = 1, 2, . . . , n,

where λν , ν = 1, 2, . . . , n, are the weights in the Gauss formula (1).
(d) Formula (3) has degree of exactness (at least) 4n− 2`+ 2 if n ≥ 2`− 1.
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Anti-Gaussian and averaged Gaussian formulae for measures with constant
recurrence coefficients extended (N. submitted)

Theorem 11 Consider a measure dσ ∈M(αe,αo,β)
` [a, b]. Then the following holds:

(a) The anti-Gaussian formula (4) for all n ≥ 2`− 1 is given by

tµ = τ ∗µ, wµ = 2σ∗µ, µ = 1, 2, . . . , n+ 1,

where τ ∗µ are the Stieltjes nodes and σ∗µ the corresponding weights in the respective
Gauss-Kronrod formula (3).

(b) The averaged Gaussian formula obtained by the quadrature sum (5) for all
n ≥ 2` − 1 gives the same error estimate for RG

n (f) as the Gauss-Kronrod formula
(3), that is,

|RG
n (f)| ' |QG

n (f)−QK
n (f)| = |QG

n (f)−QAvG
2n+1(f)| =

|QG
n (f)−QAG

n+1(f)|
2

.

(c) The averaged Gaussian formula obtained by the quadrature sum (5) for all
n ≥ 2`− 1 has degree of exactness (at least) 4n− 2`+ 2.
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Numerical examples

1. We approximate the integral ∫ 1

−1

eωt
2√

1− t2
1 + 8t2

dt,

using the Gauss formula (1) for the Bernstein-Szegö measure dσ(t) = (1−t2)1/2

1+8t2
dt, −1 ≤

t ≤ 1, which is symmetric and belongs to the class M(0,1/4)
2 [−1, 1]. We want to

estimate the error by means of either the Gauss-Kronrod formula (3) or the anti-
Gaussian formula (4) or the averaged Gaussian formula obtained by the quadrature
sum (5), all for the measure dσ.

We have the following estimates

|RG
n (f)| ' |QG

n (f)−QK
n (f)| = |QG

n (f)−QAvG
2n+1(f)| =

|QG
n (f)−QAG

n+1(f)|
2

, (13)

and
|RG

n (f)| ' |QG
n (f)−QAG

n+1(f)|. (14)
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ω n Estimate (13) Error
0.25 5 0.34293879340445752667(-8) 0.34293879340998812119(-8)
0.5 5 0.12071257186969120661(-6) 0.12071257193337309965(-6)
1.0 5 0.46884850418394618087(-5) 0.46884851244292840060(-5)

10 0.15976103307723944006(-12) 0.15976103307723944018(-12)
2.0 5 0.22385466978816500828(-3) 0.22385480636040099772(-3)

10 0.25588826185324556767(-9) 0.25588826185324577168(-9)
4.0 5 0.16801749617265879605(-1) 0.16802124385775649115(-1)

10 0.66155361907837291451(-6) 0.66155361907895200196(-6)

ω n Estimate (14) Error
0.25 5 0.68587758680891505335(-8) 0.34293879340998812119(-8)
0.5 5 0.24142514373938241321(-6) 0.12071257193337309965(-6)
1.0 5 0.93769700836789236173(-5) 0.46884851244292840060(-5)

10 0.31952206615447888013(-12) 0.15976103307723944018(-12)
2.0 5 0.44770933957633001655(-3) 0.22385480636040099772(-3)

10 0.51177652370649113534(-9) 0.25588826185324577168(-9)
4.0 5 0.33603499234531759210(-1) 0.16802124385775649115(-1)

10 0.13231072381567458290(-5) 0.66155361907895200196(-6)
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2. We approximate the integral ∫ 2

−2

cos 2t

a2 + t2
dσ(t),

using the Gauss formula (1) for the measure dσ on the interval [−2, 2], which is
such that the corresponding orthogonal polynomials satisfy the three-term recurrence
relation

πn+1(t) = tπn(t)− βnπn−1(t), n = 0, 1, 2, . . . ,

π0(t) = 1, π−1(t) = 0,

with
β0 = 2π, β1 = 2, βn = 1, n ≥ 2.

Obviously, dσ is symmetric and belongs to the classM(0,1)
2 [−2, 2]. We want to esti-

mate the error of the Gauss formula (1) by means of either the Gauss-Kronrod formula
(3) or the anti-Gaussian formula (4) or the averaged Gaussian formula obtained by
the quadrature sum (5), all for the measure dσ.
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a n Estimate (13) Error
0.5 5 0.15950252604625732883(1) 0.17293193666037607515(1)

10 0.13334890750170194607(0) 0.13240370886221642898(0)
15 0.11226247409308208931(-1) 0.11232946796027654841(-1)
20 0.94515115316491529235(-3) 0.94510366684431348902(-3)

1.0 5 0.17183249892423693967(0) 0.17323028963303109824(0)
10 0.13976983112059154117(-2) 0.13976059136176722502(-2)
15 0.11364152054685362994(-4) 0.11364158162809131302(-4)
20 0.92397587839372000735(-7) 0.92397587435582498851(-7)

2.0 5 0.89285471186899925240(-2) 0.89298880754113225641(-2)
10 0.13409566916884800128(-5) 0.13409566620469198678(-5)
15 0.19936912912780380925(-9) 0.19936912912845902956(-9)
20 0.29641560144932457723(-13) 0.29641560144932443240(-13)

4.0 5 0.43856789247808432022(-3) 0.43856819491682257127(-3)
10 0.30243873825096542187(-9) 0.30243873825087803545(-9)
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a n Estimate (14) Error
0.5 5 0.31900505209251465766(1) 0.17293193666037607515(1)

10 0.26669781500340389215(0) 0.13240370886221642898(0)
15 0.22452494818616417862(-1) 0.11232946796027654841(-1)
20 0.18903023063298305847(-2) 0.94510366684431348902(-3)

1.0 5 0.34366499784847387933(0) 0.17323028963303109824(0)
10 0.27953966224118308235(-2) 0.13976059136176722502(-2)
15 0.22728304109370725988(-4) 0.11364158162809131302(-4)
20 0.18479517567874400147(-6) 0.92397587435582498851(-7)

2.0 5 0.17857094237379985048(-1) 0.89298880754113225641(-2)
10 0.26819133833769600255(-5) 0.13409566620469198678(-5)
15 0.39873825825560761849(-9) 0.19936912912845902956(-9)
20 0.59283120289864915446(-13) 0.29641560144932443240(-13)

4.0 5 0.87713578495616864044(-3) 0.43856819491682257127(-3)
10 0.60487747650193084374(-9) 0.30243873825087803545(-9)
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Open questions

• Identify the measures dσ ∈M(αe,αo,β)
` [a, b].

• Are other measures dσ on the interval [a, b] such that the Stieltjes polynomial
π∗n+1(·) = π∗n+1(·; dσ) has a special form (like π∗n+1(t) = πn+1(t)− βπn−1(t))?

• Are other measures dσ on the interval [a, b] such that the corresponding Gauss-
Kronrod and averaged Gaussian formulae coincide?

• Are measures dσ on the interval [a, b] such that the corresponding averaged
Gaussian formula has maximum degree of exactness and anyway better than
2n+ 1?
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