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Why RandNLA?

Randomization and sampling allow us to design provably accurate algorithms for 
problems that are:

 Massive 

(matrices so large that can not be stored at all, or can only be stored in slow memory devices)

 Computationally expensive or NP-hard 

(combinatorial optimization problems, such as the Column Subset Selection Problem)
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Randomized algorithms
• By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that 
are close to the original matrix (w.r.t. matrix norms) with high probability. 

Here C consists of a few (rescaled) columns of A and R consists of the corresponding (rescaled) 
rows of B. 

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Randomized algorithms
• By preprocessing the matrix using almost any random matrix, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability. 

This is equivalent to setting C = AX, where X is (say) a random Gaussian matrix and the number 
of columns in X is much smaller than the number of columns in A; similarly, R = XTB.

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Randomized algorithms
• By (carefully) sampling rows/columns of a matrix, we can construct new, smaller matrices that 
are close to the original matrix (w.r.t. matrix norms) with high probability. 

• By preprocessing the matrix using “random projection” matrices, we can sample rows/columns 
much less carefully (uniformly at random) and still get nice bounds with high probability. 

Matrix perturbation theory

• The resulting “sketches” behave similarly (e.g., in terms of singular values and singular vectors) 
to the original matrices thanks to the norm bounds.

RandNLA in a slide

Example:
Randomized

Matrix 
Multiplication
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Interplay

Theoretical Computer Science 

Randomized and approximation 
algorithms

Applications in BIG DATA

(Data Mining, Information Retrieval, 
Machine Learning, Bioinformatics, etc.)
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Applied Math

1. Numerical Linear Algebra  
(matrix computations, perturbation 

theory)

2. Probability theory
(esp. measure concentration for 

sums of random matrices)



 RandNLA approaches for regression problems

 RandNLA approaches for Principal Component Analysis (PCA)

(was also discussed in Andreas Stathopoulos’ talk on Monday)
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Roadmap
(Drineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018)



 RandNLA approaches for regression problems

 RandNLA approaches for Principal Component Analysis (PCA)

(was also discussed in Andreas Stathopoulos’ talk on Monday)

Why regression and PCA?

Both problems are of paramount importance in Big (as well as in Tiny, Small, 
Medium, Massive, etc.) Data analysis.

Both problems are at the heart of multiple disciplines: Computer Science 
(Numerical Linear Algebra, Machine Learning), Applied Mathematics, and Statistics. 

Both problems have a very rich history: 

 Regression was introduced in the 1800s (Gauss, Legendre, etc.)

 PCA was introduced in the 1900s (Pearson, Hotelling, etc.)
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Roadmap
(Drineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018)



Problem definition and motivation

In data analysis applications one has n observations of the form:

A is an n-by-d “design matrix” (n >> d):

In matrix-vector notation,

Model y(t) (unknown) as a linear combination of d basis functions:
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Least-norm approximation problems

The linear measurement model:

In order to estimate x, solve:
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Application: data analysis in science

• First application: Astronomy

Predicting the orbit of the asteroid Ceres (in 1801!).

Gauss (1809) -- see also Legendre (1805) and Adrain (1808).

First application of “least squares optimization” and runs in 
O(nd2) time!

• Data analysis: Fit parameters of a biological, chemical, economical, 
physical, astronomical, social, internet, etc. model to experimental data. 
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Norms of common interest

Least-squares approximation:

Chebyshev or mini-max approximation:

Sum of absolute residuals approximation:

Let y = b and define the residual:
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Least-squares problems

We are interested in over-constrained least-squares problems, n >> d.
We will briefly discuss under-constrained (n << d) and square (n ≈ d) problems later.  

Typically, there is no xopt such that Axopt = b.

Want to find the “best” xopt such that Axopt ≈ b.

13



Projection of b on the 
subspace spanned by the 

columns of A

Exact solution to L2 regression

Cholesky Decomposition: 
If A is full rank and well-conditioned, 

decompose ATA = RTR, where R is upper triangular, and 

solve the normal equations: RTRx = ATb.

QR Decomposition: 
Slower but numerically stable, esp. if A is rank-deficient.

Write A = QR, and solve Rx = QTb.

Singular Value Decomposition:
Most expensive, but best if A is very ill-conditioned.

Write A = UΣVT, in which case: xopt = A+b = VΣ-1UTb.

Complexity is O(nd2) , but constant factors differ.

Pseudoinverse of A
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Algorithm: Sampling for L2 regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007, 
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

Algorithm

1. Compute a probability distribution over the 
rows of A (pi, i=1…n, summing up to one).

2. In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with respect to 
the pi.
(Rescale sampled rows of A and sampled elements 
of b by (1/(rpi)1/2.)

3. Solve the induced problem.
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Algorithm

1. Compute a probability distribution over the 
rows of A (pi, i=1…n, summing up to one).

2. In r i.i.d. trials pick r rows of A and the 
corresponding elements of b with respect to 
the pi.
(Rescale sampled rows of A and sampled elements 
of b by (1/(rpi)1/2.)

3. Solve the induced problem.
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Algorithm: Sampling for L2 regression
(Drineas, Mahoney, Muthukrishnan SODA 2006, Sarlos FOCS 2007, 
Drineas, Mahoney, Muthukrishnan, & Sarlos NumMath2011)

We will now discuss the pi’s: our work introduced the notion of the leverage scores.



Leverage scores: tall & thin matrices
Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:
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 The matrix U contains the left singular vectors of A. 

 The columns of U are pairwise orthogonal and normal.

 This is NOT the case for rows of U: all we know is that the Euclidean 
norms of its rows are between zero and one.



Leverage scores: tall & thin matrices

(Row) Leverage scores: 

i-th row of U

The (row) leverage scores can now be used to sample rows from A to create a sketch.

Let A be a (full rank) n-by-d matrix with n>>d whose SVD is:
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Computing leverage scores
Drineas, Magdon-Ismail, Mahoney, and Woodruff ICML 2012, JMLR 2012

 Trivial: via the Singular Value Decomposition 

O(nd2) time for n-by-d matrices with n>d.

 Non-trivial: relative error (1+ε) approximations for all leverage scores.

Tall & thin matrices:

Running time: O(ndε-2 polylog(n/ε)).
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Theorem
If the pi are the row leverage scores of A, then, with probability at least 0.8,

The sampling complexity (the value of r) is
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Proof: a structural result
Consider the over-constrained least-squares problem:

and the “sketched” (or “preconditioned”) problem

Recall: A is n-by-d with n >> d; X is r-by-n with r << n. 

 Think of XA as a “sketch” of A. 

 Our approach (using the leverage scores) focused on sketches of A that consist of 
(rescaled) rows of A.

 More general matrices X are possible and have been heavily studied.
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Proof: a structural result

Let UA be the n-by-d matrix of the left singular vectors of A.

If X satisfies (constants are somewhat arbitrary):

then, 
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Constructions for X

 If X is a sampling-and-rescaling matrix formed using the row leverage scores of 
the matrix A, then both conditions are satisfied.

(I.e., an r-by-n matrix whose t-th row has a single non-zero entry indicating, 
and rescaling, the row of A that was sampled at the t-th trial.)

 Interestingly, many other matrices X satisfy both conditions: e.g., X can be a 
matrix whose entries are:

 Random Gaussians (up to normalization).

 Random signs (up to normalization).

 The randomized Hadamard transform and its variants.

 The input sparsity transform of Clarkson & Woodruff.
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The “heart” of the proof

Then, we can prove that with probability at least 1-δ:

It follows that, for all i:

At the heart of all proofs in this line of research lies the following observation:

UA is an orthogonal matrix: 

UA
TUA = Id

XUA is a full-rank matrix!
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The “heart” of the proof (cont’d)

Recall: with probability at least 1-δ:

It follows that, for all i:

 The sampling complexity is r=O(d ln d).

 Proving the above inequality is (now) routinely done via matrix concentration 
inequalities (at least in most cases).

 Early proofs were very complicated and not user-friendly.
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Follow-up

A lot of follow-up work, including:

 Avron, Maymounkov, and Toledo SISC 2010: Blendenpik, a solver that uses the 
“sketch” XA as a preconditioner, combined with an iterative least-squares solver. 
Beats LAPACK by a factor of four in essentially all over-constrained least-
squares problems.

 Iyer, Avron, Kollias, Inechein, Carothers, and Drineas JCS 2016: an 
evaluation of Blendenpik on terascale matrices in Rensselaer’s BG/Q; again 
factor four-to-six speedups compared to Elemental’s QR-based solver.

 Drineas, Mahoney, Woodruff, and collaborators (SODA 2008, SIMAX 2009, 
SODA 2013, SIMAX 2016): general p-norm regression, beyond Euclidean norm.

 Clarkson and Woodruff STOC 2013: relative error algorithms for over-
constrained least-squares regression problems in input sparsity time using a 
novel construction for the sketching matrix X.
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Follow-up (cont’d)
 Pilanci and Wainwright IEEE TIF 2015, JMLR 2016, SIOPT 2017: A novel 

iterative sketching-based method (Hessian sketch) to solve over-constrained 
least-squares regression problems over convex bodies.

 Paul, Magdon-Ismail, and Drineas NIPS 2015, Derezinski and Warmuth NIPS 
2017, AISTATS 2018, COLT 2018, JMLR 2018: Adaptive and volume sampling 
approaches to construct the sketching matrix X.

 Alaoui and Mahoney NIPS 2015, Cohen, Musco, Musco, and collaborators STOC 
2015, SODA 2017, FOCS 2017: ridge leverage scores, a smooth and regularized 
generalization of the leverage scores.

 Chowdhuri, Yang, and Drineas ICML 2018: structural conditions for under-
constrained problems (n << d case); a preconditioned Richardson-like solver for 
such problems; check our paper for a detailed discussion on prior work for such 
under-constrained problems. 28



Related work: the “square” case
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The “square” case: solving systems of linear equations
• Almost optimal relative-error approximation algorithms for Laplacian and, more 

generally, Symmetric Diagonally Dominant (SDD) matrices 

• Pioneered by Spielman and Teng, major contributions later by Miller, Koutis, 
Peng, and many others.

• Roughly speaking, the proposed methods are iterative preconditioned solvers 
where the preconditioner is a sparse version of the original graph. 

• This sparse graph is constructed by sampling edges of the original graph with 
probability proportional to their leverage scores, which in the context of 
graphs are called effective resistances.

• Still open: progress beyond Laplacians. 

• Results by Peng Zhang and Rasmus Kyng (FOCS 2017) indicate that such 
progress might be challenging.

• Check Koutis, Miler, and Peng CACM 2012 for a quick intro.



 RandNLA approaches for regression problems

 RandNLA approaches for Principal Component Analysis (PCA)

Roadmap
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Single Nucleotide Polymorphisms: the most common type of genetic variation in the 
genome across different individuals.

They are known locations at the human genome where two alternate nucleotide bases 
(alleles) are observed (out of A, C, G, T).

SNPs

in
di

vi
du

al
s

… AG CT GT GG CT CC CC CC CC AG AG AG AG AG AA CT AA GG GG CC GG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CT AA GG GG CC GG AA GG AA CC AA CC AA GG TT AA TT GG GG GG TT TT CC GG TT GG GG TT GG AA …
… GG TT TT GG TT CC CC CC CC GG AA AG AG AA AG CT AA GG GG CC AG AG CG AC CC AA CC AA GG TT AG CT CG CG CG AT CT CT AG CT AG GG GT GA AG …
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA CC GG AA CC CC AG GG CC AC CC AA CG AA GG TT AG CT CG CG CG AT CT CT AG CT AG GT GT GA AG …
… GG TT TT GG TT CC CC CC CC GG AA GG GG GG AA CT AA GG GG CT GG AA CC AC CG AA CC AA GG TT GG CC CG CG CG AT CT CT AG CT AG GG TT GG AA …
… GG TT TT GG TT CC CC CG CC AG AG AG AG AG AA CT AA GG GG CT GG AG CC CC CG AA CC AA GT TT AG CT CG CG CG AT CT CT AG CT AG GG TT GG AA …
… GG TT TT GG TT CC CC CC CC GG AA AG AG AG AA TT AA GG GG CC AG AG CG AA CC AA CG AA GG TT AA TT GG GG GG TT TT CC GG TT GG GT TT GG AA …

Typical sizes: tens of thousands of individuals and hundreds of thousands of SNPs.

PCA: An example in human genetics
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HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium 
(2003, 2005, 2007), Nature

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)
The Human Genome Diversity Panel (HGDP)

ASW, MKK, 
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

We will apply 
PCA (i.e., SVD 
on a suitably 

rescaled 
covariance 
matrix) to 
visualize 

and/or analyze 
the data.



SVD: formal definition

ρ: rank of A

U (V): orthogonal matrix containing the left (right) singular vectors of A.

Σ: diagonal matrix containing the singular values of A.

Let σ1 , σ2 , … , σρ be the entries of Σ.

Computing the SVD takes O(min{mn2 , m2n}) time. 

The top k left/right singular vectors/values can be computed faster using 
iterative methods.



HGDP data

• 1,033 samples

• 7 geographic regions

• 52 populations

Cavalli-Sforza (2005) Nat Genet Rev

Rosenberg et al. (2002) Science

Li et al. (2008) Science

The International HapMap Consortium 
(2003, 2005, 2007), Nature

Matrix dimensions:

2,240 subjects (rows)

447,143 SNPs (columns)
The Human Genome Diversity Panel (HGDP)

ASW, MKK, 
LWK, & YRI

CEU

TSI
JPT, CHB, & CHD

GIH

MEX

HapMap Phase 3 data

• 1,207 samples

• 11 populations

HapMap Phase 3

PCA on the 
above data 
returns:



Africa

Middle East

South Central 
Asia

Europe

Oceania

East Asia

America

Gujarati 
Indians

Mexicans

• Top two Principal Components (PCs or eigenSNPs)
(Lin and Altman (2005) Am J Hum Genet)

• Very good correlation between geography and the top two eigenSNPs.

• Mexican population seems out of place: we move to the top three PCs.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Africa
Middle East

S C Asia & 
Gujarati Europe

Oceania

East Asia

America

Not altogether satisfactory: the principal components are linear combinations 
of all SNPs, and – of course – can not be assayed!

Can we find actual SNPs that capture the information in the singular vectors?

Formally: spanning the same subspace.

Paschou, Lewis, Javed, & Drineas (2010) J Med Genet



Paschou, Drineas, et. al. (2014) PNAS

• PCA plots of genetic data from multiple populations around the Mediterranean Sea 
indicate that the Mediterranean acted as a “barrier” during the colonization of 
Europe from our species.

• Using PCA (and many other analyses) we proposed what is a called a maritime route
for the colonization of Europe.

• Interpreting the singular vectors is, again, tricky; we identified SNPs (and genes) 
that capture the information in the singular vectors.



Kalamata

PCA identifies and extracts 
genetic micro-structure at 
very local levels and small 
geographical distances.

Consider, for example, 
Peloponnesos.



Tsakonia: Central-
East Peloponnesos

Lakonia/Mani 
(Tayetos): South 
Peloponnesos



• Computing large SVDs: computational time
• In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes.

• Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs 
out-of-memory in MatLab); we compute the eigendecomposition of AAT.

• In 2010, we had to compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-by-
450,000 for a full leave-one-out cross-validation experiment. 
(Drineas, Lewis, & Paschou (2010) PLoS ONE)

• To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient 
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices.
(Hughey, Paschou, Drineas, et al. (2013) Nat Comm)

• Current population genetics datasets generate 1,000,000-by-1,000,000 matrices
(Bose et al. (2018) TeraPCA package.) 

SVD: computational time



• Computing large SVDs: computational time
• In commodity hardware (e.g., a 4GB RAM, dual-core laptop), using MatLab 7.0 (R14), the 
computation of the SVD of the dense 2,240-by-447,143 matrix A takes about 12 minutes.

• Computing this SVD is not a one-liner, since we can not load the whole matrix in RAM (runs 
out-of-memory in MatLab); we compute the eigendecomposition of AAT.

• In 2010, we had to compute 1,200 SVDs on matrices of dimensions (approx.) 1,200-by-
450,000 for a full leave-one-out cross-validation experiment. 
(Drineas, Lewis, & Paschou (2010) PLoS ONE)

• To compare mtDNA derived from 37 ancient Minoan bones to 120 extant and ancient 
populations we ran (multiple) SVDs on (approx.) 14,000-by-14,000 matrices.
(Hughey, Paschou, Drineas, et al. (2013) Nat Comm)

• Current population genetics datasets generate 1,000,000-by-1,000,000 matrices.
(Bose et al. (2018) TeraPCA package.) 

• Running time is always a concern, but machine-precision is not necessary!
• Data are noisy and approximate singular vectors work well in many settings.

SVD: computational time



SVD decomposes a matrix as…

Top k left singular vectors

The SVD has strong 
optimality properties.

 It is easy to see that X = ΣkVk
T = Uk

TA.

 SVD has strong optimality properties.

 The columns of Uk are linear combinations of up to all columns of A.



The CX decomposition
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl
Mahoney & Drineas (2009) PNAS

c columns of A

Carefully 
chosen X

Goal: make (some norm) of A-CX small.

Why?

If A is an subject-SNP matrix, then selecting representative columns is 
equivalent to selecting representative SNPs to capture the same structure 
as the top eigenSNPs.

We want c as small as possible!



CX decomposition

c columns of A

Easy to prove that optimal X = C+A. (C+ is the Moore-Penrose pseudoinverse of C.)

Thus, the challenging part is to find good columns (SNPs) of A to include in C.

From a mathematical perspective, this is a hard combinatorial problem, closely 
related to the so-called Column Subset Selection Problem (CSSP).

The CSSP has been heavily studied in Numerical Linear Algebra.



Relative-error Frobenius norm bounds
Drineas, Mahoney, & Muthukrishnan (2008) SIAM J Mat Anal Appl

Given an m-by-n matrix A, there exists an O(mn2) algorithm that picks

at most O( (k/ε2) log (k/ε) ) columns of A

such that with probability at least .9

Notation:



The algorithm

Sampling algorithm

• Compute probabilities pj summing to 1.

• Let c = O( (k/ε2) log (k/ε) ).

• In c i.i.d. trials pick columns of A, where in each trial the j-th column of A is picked with 
probability pj.

• Let C be the matrix consisting of the chosen columns.

Input: m-by-n matrix A, 

0 < ε < .5, the desired accuracy

Output: C, the matrix consisting of the selected columns



Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Leverage score sampling:

Vk: orthogonal matrix containing the top 
k right singular vectors of A.

Σ k: diagonal matrix containing the top k 
singular values of A.

Normalization s.t. the 
pj sum up to 1



Subspace sampling (Frobenius norm)

Remark: The rows of Vk
T are orthonormal vectors, but its columns (Vk

T)(i) are not.

Vk: orthogonal matrix containing the top 
k right singular vectors of A.

Σ k: diagonal matrix containing the top k 
singular values of A.

Normalization s.t. the 
pj sum up to 1

Leverage scores
(useful in statistics for 

outlier detection)

Leverage score sampling:



SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

BACK TO POPULATION GENETICS DATA
Selecting PCA SNPs for individual assignment to four continents 

(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One

Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



SNPs by chromosomal order

PC
A

-s
co

re
s

* top 30 PCA-correlated SNPs

Africa

Europe

Asia

America

Afr

Eur

Asi

Ame

Selecting PCA SNPs for individual assignment to four continents 
(Africa, Europe, Asia, America)

Paschou et al (2007; 2008) PLoS Genetics; Paschou et al (2010) J Med Genet; Drineas et al (2010) PLoS One

Hughey, Paschou, Drineas, et al. (2013) Nat Comm; Paschou, Drineas, et al. PNAS 2014;



Approximating leverage scores

Can we approximate the leverage scores fast?

Theorem: Given any m-by-n matrix A with m > n, we can approximate its leverage scores 
(where k is the target rank)  with relative error accuracy in 

O(mnk log m) time,

as opposed to the – trivial – O(mn2) time. 
(Drineas, Mahoney, Magdon-Ismail, & Woodruff ICML ’12 JMLR ‘12)

Improvement: leverage scores can be computed in O(nnz(A) k) time!

Clarkson and Woodruff (STOC ’13): introduced a sparse random projection;

Mahoney and Meng (STOC ‘13): provided a better analysis for the above result;

Nelson and Huy (FOCS ’13): provided the best known analysis for the above result;

Boutsidis and Woodruff (STOC ‘14): applications to many RandNLA problems.

Sobczyk and Gallopoulos ‘17: block iterative methods for fast estimation 



Problem 

How many columns do we need to include in the matrix C in order to get relative-error 
approximations ?

Recall: with O( (k/ε2) log (k/ε) ) columns, we get (subject to a failure probability)

Deshpande & Rademacher (FOCS ’10): with exactly k columns, we get

What about the range between k and O(k log(k))?

Selecting fewer columns



Selecting fewer columns (cont’d)
(Boutsidis, Drineas, & Magdon-Ismail, FOCS 2011 and SICOMP 2014)

Question:

What about the range between k and O(k log(k))? 

Answer:

A relative-error bound is possible by selecting s=2k/ε columns!

Technical breakthrough; 

A combination of sampling strategies with a novel approach on column selection, 
inspired by the work of Batson, Spielman, & Srivastava (STOC ’09) on graph sparsifiers. 

• The running time is O((mnk+nk3)ε-1).

• Simplicity is gone…



Lower bounds and alternative approaches
Deshpande & Vempala, RANDOM 2006

A relative-error approximation necessitates at least k/ε columns.

Guruswami & Sinop, SODA 2012 

Alternative approaches, based on volume sampling, guarantee

(r+1)/(r+1-k) relative error bounds.

This bound is asymptotically optimal (up to lower order terms). 

The proposed deterministic algorithm runs in O(rnm3 log m) time, while the 
randomized algorithm runs in O(rnm2) time and achieves the bound in expectation.

Guruswami & Sinop, FOCS 2011

Applications of column-based reconstruction in Quadratic Integer Programming.

Musco, Musco, Cohen, Woodruff, and collaborators

Multiple articles in STOC, FOCS, SODA, NIPS, ICML in 2016 and 2017 on ridge 
leverage scores and other approaches.



Iterative methods for PCA
(Drineas, Ipsen, Kontopoulou, and Magdon-Ismail SIMAX 2018
Drineas and Ipsen, under review SIMAX 2018)

To get highly accurate approximations to singular vectors, use iterative methods.

1. Block subspace iteration

Given an m-by-n matrix A and a positive integer q, compute

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix. 

Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds…): denote it by �̃�𝐴𝑘𝑘.



1. Block subspace iteration

Given an m-by-n matrix A and a positive integer q, compute

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix. 

Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds…): denote it by �̃�𝐴𝑘𝑘. 
 Strong bounds can be proven for the Frobenius and spectral norms of the matrix 𝐴𝐴 − �̃�𝐴𝑘𝑘.

 We implemented block subspace iteration to approximate the top singular vectors of tera-
scale matrices arising in population genetics in:

A. Bose, V. Kalantzis, E. Kontopoulou, M. Elkadi, P. Paschou, and P. Drineas, “TeraPCA: a fast and 
scalable method to study genetic variation in tera-scale genotypes”, under review, Genome 
Biology, 2018.

Iterative methods for PCA (cont’d)



2. Block Krylov methods

Given an m-by-n matrix A (of rank ρ) and a positive integer q, compute

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix. 

Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds): denote it by �̃�𝐴𝑘𝑘. 
 Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed):

Iterative methods for PCA



2. Block Krylov methods

Given an m-by-n matrix A (of rank ρ) and a positive integer q, compute

where X is an n-by-p (with p ≈ k) random matrix, e.g., a random Gaussian matrix. 

Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds): denote it by �̃�𝐴𝑘𝑘. 
 Assume a gap g(>0) between the k and (k+1)-st singular values (can be relaxed):

 Also assume (γ1 and γ2 are constants):

and

Bottom ρ-k singular 
vectors of A
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Compute the best rank-k approximation to A within the subspace spanned by the columns 
of K (much easier to do than it sounds): denote it by �̃�𝐴𝑘𝑘. Then,

Iterative methods for PCA



• Primal dual interior point methods necessitate solving least-squares problems (projecting 
the gradient on the null space of the constraint matrix in order to remain feasible).

(Dating back to the mid/late 1980’s and work by Karmarkar, Ye, Freund)

• Can we solve these least squares problems approximately using random sampling/random 
projections?

• Modern approaches: primal/dual interior point methods iterate along an approximation to 
the Newton direction and tolerate (mild) infeasibilities. A system of linear equations must 
be solved.

(inexact interior point methods: work by Bellavia, Steihaug, etc.)

• Well-known by practitioners: the number of iterations in interior point methods is not
the bottleneck, but the computational cost of solving a linear system is.

• Goal: Use sampling/random projection approaches to design efficient precoditioners to 
solve systems of linear equations that arise in primal-dual interior point methods faster.

Progress by Roosta & Mahoney (ArXiv 2016, 2017 multiple papers on subsampled 
second-order methods).

RandNLA and optimization



“Randomization is arguably the most exciting and innovative idea to have hit 
linear algebra in a long time.” (Avron et al. (2010) SISC)

RandNLA events

 RandNLA workshop, Simons Institute for the Theory of Computing, UC 
Berkeley, Foundations of Data Science, Sep 2018

https://simons.berkeley.edu/data-science-2018-1

RandNLA course, PCMI Summer School on Mathematics of Data, Jul 2016
Drineas & Mahoney, Lectures on RandNLA, Vol. 25, Amer. Math. Soc., 2018

 Highlighted at the Workshops on Algorithms for Modern Massive Datasets 
(MMDS) 2006, 2008, 2010, 2012, 2014, and 2016. 

http://mmds-data.org/

 Gene Golub SIAM Summer School (G2S3), Δελφοί, Greece, June 2015
http://scgroup19.ceid.upatras.gr/g2s32015/

 Invited tutorial at SIAM ALA 2015 

 RandNLA workshop in FOCS 2012
http://ieee-focs.org/focs2012/workshops/RandomNLA/

http://mmds-data.org/
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