
Generalized Matrix Functions:
Theory and Computation

Michele Benzi
Department of Mathematics and Computer Science

Emory University

Atlanta, Georgia, USA

NASCA‘18
Kalamata, Greece

July 2-6, 2018

1

Outline

1 Introduction

2 Definitions and basic properties

3 Two applications

4 Algorithms

5 Numerical experiments

6 Conclusions

2

Acknowledgements

Francesca Arrigo (Strathclyde), Caterina Fenu (Cagliari)

Jared Aurentz (ICM Madrid), Anthony Austin (Argonne National
Laboratory), Vassilis Kalantzis (U. of Minnesota)

Ru Huang (Emory)

Support: NSF (Grant DMS-1719578)

Thanks to the organizers for the invitation

3

Introduction

Generalized matrix functions were originally introduced by J. B. Hawkins
and A. Ben-Israel in 1973 in an attempt to extend the notion of a matrix
function to rectangular matrices. The idea was to parallel the construction
of the (Moore-Penrose) generalized inverse, using the SVD.

J. B. Hawkins and A. Ben-Israel, On generalized matrix functions, Linear
and Multilinear Algebra, 1 (1973), pp. 163–171.

This paper is purely theoretical and does not mention any applications.

4

Introduction (cont.)

Note that the use of the term “generalized" is somewhat misleading, since
this notion of matrix function does not reduce to the usual one when A is
square, except in special situations.

The name was dropped in the treatment given later in

A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and
Applications, Second Ed., Springer, New York, 2003.

5

Introduction (cont.)

This notion has gone largely unnoticed for many years. Nevertheless,
generalized matrix functions, usually unrecognized as such, have
apppeared repeatedly in di�erent contexts in the literature and do have
important applications, for instance to matrix optimization and low-rank
approximation problems arising in

compressed sensing
computer vision (photometric stereo and optical flow)
regularization of discrete ill-posed problems
MRI
control theory
complex frequency estimation

The notion of generalized matrix function also arises in the analysis of
directed networks and in the computation of (standard) functions of
skew-symmetric matrices.

6

Definition of generalized matrix function

Definition

Let A œ Cm◊n be a rank r matrix and let A = Ur�rV
ú
r be its compact

SVD. Let f : R+ æ R be a scalar function such that f(‡i) is defined for
all i = 1, 2, . . . , r. The generalized matrix function fù : Cm◊n æ Cm◊n
induced by f is defined as

fù(A) := Urf(�r)V
ú
r ,

where f(�r) is defined for the r ◊ r matrix �r in the standard way:

f(�r) = diag(f(‡1), f(‡2), . . . , f(‡r)).

Note: This notion of matrix function reduces to the usual one when A is
Hermitian positive definite, or if A is positive semidefinite and f satisfies
f(0) = 0.

7

Basic properties
For A =

qr
i=1 ‡iuivúi =

qr
i=1 ‡iEi, let

E :=

rÿ

i=1
Ei = UrV

ú
r .

Note that EEú = PR(A) and EúE = PR(Aú).

Proposition
Let f, g, h : Ræ R be scalar functions and let fù, gù, hù : Cm◊n æ Cm◊n
be the corresponding generalized matrix functions. Then:
(i) if f(z) = k, then fù(A) = kE;
(ii) if f(z) = z, then fù(A) = A;
(iii) if f(z) = z≠1, then fù(A) = (A†)ú;
(iv) if f(z) = g(z) + h(z), then fù(A) = gù(A) + hù(A);
(v) if f(z) = g(z)h(z), then fù(A) = gù(A)Eúhù(A).

8

Basic properties (cont.)

Proposition
Let A œ Cm◊n be a matrix of rank r. Let f : R+ æ R be a scalar function
and let fù : Cm◊n æ Cm◊n be the induced generalized matrix function,
assumed to be defined at A. Then the following properties hold true.
(i) [fù(A)]

ú
= fù(Aú);

(ii) let X œ Cm◊m and Y œ Cn◊n be two unitary matrices, then
fù(XAY) = X[fù(A)]Y ;

(iii) if A = diag(A11, A22, . . . , Akk), then

fù(A) = diag(fù(A11), fù(A22), . . . , fù(Akk));

(iv) fù(Ik ¢A) = Ik ¢ fù(A);
(v) fù(A¢ Ik) = fù(A)¢ Ik.

9

Basic properties (cont.)

The next three propositions describe the relation between generalized and
standard matrix functions.

Proposition
Let A œ Cm◊n be a rank r matrix and let f : R+ æ R be a scalar function.
Let fù : Cm◊n æ Cm◊n be the induced generalized matrix function. Then

fù(A) =

A
rÿ

i=1

f(‡i)

‡i
uiuúi
B

A = A

A
rÿ

i=1

f(‡i)

‡i
vivúi
B

, (1a)

or, equivalently,

fù(A) = f(
Ô
AAú)(

Ô
AAú)†A = A(

Ô
AúA)

†f(
Ô
AúA). (1b)

10

Basic properties (cont.)

Proposition
Let A œ Cm◊n have the polar decomposition

A = PH

with P œ Cm◊n having orthonormal columns and H œ Cn◊n Hermitian
positive semidefinite. If fù(A) is defined, then

fù(A) = Pf(H) , (2)

where f(H) is a standard matrix function of H.

Note: recall that H =

Ô
AúA.

11

Basic properties (cont.)

Proposition
Let f be defined on A =MúM where M œ Cr◊n has rank r Æ n; if r < n
we assume that f(0) = 0. If M = Ur�rV

ú
r , then

f(A) = Vrg(�r)
2V úr = [Vrg(�r)U

ú
r] [Urg(�r)V

ú
r] = [gù(M)]

ú
[gù(M)] ,

(3)
where g(x) :=

f(x2

).

Note that g = f when f(x) = x–, – œ R.

12

Basic properties (cont.)

When f is analytic, it is also possible to express fù(A) in terms of
generalized power series and also in terms of contour integrals. We
will not need these representations here.

The notion of generalized matrix function also extends to compact
operators on infinite-dimensional separable Hilbert spaces (since the
SVD does).

F. Andersson, M. Carlsson, and K.-M. Perfekt, Operator-Lipschitz estimates
for the singular value functional calculus, Proceedings of the AMS, 144(5),
pp. 1867–1875, 2016.

13

Structure preservation

When designing numerical methods for computing matrix functions it is
often useful to know in advance whether certain structural properties of A
are preserved. For instance, it is well known that a (standard) matrix
function B = f(A) is triangular, or circulant, if A is triangular or circulant.

Another important result is the fact that the matrix exponential maps
skew-Hermitian matrices to unitary ones, or Hamiltonian matrices to
symplectic ones. Here the original matrix structure is not preserved, but it
is transformed into another structure by a specific function, in this case
the exponential.

It turns out that while the triangular form is not preserved by GMFs, many
other important structural properties are.

14

Structure preservation (cont.)

In the following,M denotes one of the following matrix classes:

Normal, Hermitian, Skew-Hermitian, Pseudo-Hermitian,
Pseudo-skew-Hermitian, Symmetric, Skew-symmetric, Pseudo-symmetric,
Pseudo-skew-symmetric, Persymmetric, Perskew-symmetric, Hamiltonian,
Skew-Hamiltonian, J-Jermitian, J-skew-Hermitian, J-symmetric,
J-skew-symmetric, Centro-Hermitian, Centro-skew-Hermitian, Circulant,
Block Circulant with Circulant Blocks.

Proposition
Let A œM and assume that fù(A) is well-defined. Then fù(A) œM.

15

Structure preservation (cont.)

In other cases a given structure is preserved provided that f satisfies
certain conditions.

For example, let Q denote one of the following matrix classes:

Orthogonal, Pseudo-orthogonal, Unitary, Pseudo-unitary, Symplectic,
Conjugate Symplectic.

Proposition
Let A œ Q and assume that fù(A) is well-defined. If f satisfies
f(1
x)f(x) = 1 for x > 0, then fù(A) œ Q.

The proposition applies to all matrix powers f(x) = x–, for – real.

16

Structure preservation (cont.)

Proposition
(1) Let A be real and nonnegative. If f is the odd part of an analytic
function f(x) =

qŒ
k=0 ckx

k with c2k+1 Ø 0 for k = 0, 1, . . . and fù(A) is
well-defined, then fù(A) is a nonnegative matrix.

(2) Let A be doubly stochastic. If f is as in (1) and in addition f(1) = 1,
then fù(A) is also doubly stochastic.

17

Functions of block matrices

In network science and in the numerical solution of systems of ODEs it is
required io compute (standard) matrix functions of matrices of the form

A =

C
0 A
Aú 0

D

or B =

C
0 ≠A
Aú 0

D

.

In particular, exponentials of matrices of the form A arise in the analysis of
bipartite and directed networks, and exponentials of matrices of the form
B arise, for example, in the numerical integration of the wave equation,
the Korteveg-de Vries equation, and other Hamiltonian systems.

M. Benzi, E. Estrada, and C. Klymko, Ranking hubs and authorities using matrix
functions, LAA, 438 (2013), pp. 2447–2474.

N. Del Buono, L. Lopez, and R. Peluso, Computation of the exponential of
large sparse skew-symmetric matrices, SISC, 27 (2005), pp. 278–293.

18

Functions of block matrices (cont.)

It is easy to check that the exponentials of A and B are given by

exp(A) =

C
cosh(

Ô
AAú) sinhù(A)

sinhù(Aú) cosh(

Ô
AúA)

D

and
exp(B) =

C
cos(
Ô
AAú) ≠sinù(A)

sinù(Aú) cos(
Ô
AúA)

D

,

respectively. Similar expressions hold for other functions of A and B,
leading to even functions of

Ô
AAú and

Ô
AúA on the diagonal and to

generalized odd functions of A and Aú in the o�-diagonal positions.

Hence, generalized matrix functions occur as submatrices of (standard)
functions of certain block 2◊ 2 matrices.

19

Functions of block matrices (cont.)

Proposition

Let A œ Cm◊n and
A =

C
0 A
Aú 0

D

.

If f is defined at A, then

f(A) =

C
feven(

Ô
AAú) fùodd(A)

fùodd(A
ú
) feven(

Ô
AúA)

D

, (4)

where f = feven + fodd is the decomposition of a function in its even and
odd parts, feven(x) =

1
2(f(x) + f(≠x)) and fodd(x) =

1
2(f(x)≠ f(≠x)).

20

Functions of block matrices (cont.)

It follows that if f is an odd function, then

f(A) =

C
0 fù(A)

fù(A)

ú
0

D

. (5)

Note that every function f(x) defined on the positive singular values of A
can be extended to an odd function defined on the eigenvalues of A by
setting

f(≠‡i) = ≠f(‡i), f(0) = 0.

With this definition of f , formula (5) can always be used. It can also be
regarded as an alternative definition of fù(A).

21

Two applications
Let A be the adjacency matrix of a directed network G = (V,E), possibly
weighted. The total hub communicability of node i œ V is given by

CH(i) = [fù(A)1]i = eTi fù(A)1 ,
where f(x) = sinh(x) and 1 denotes the vector of all ones. It is a measure
of how well node i communicates with other nodes in the networks, when
regarded as a broadcaster of information (‘hub’).

Hence, the vector fù(A)1 (column sums of fù(A)) contains the total hub
communicabilities of all nodes in the network.

Likewise, The total authority communicability of node i œ V is given by
CA(i) = [fù(AT)1]i = 1T fù(A) ei .

It is a measure of how well node i communicates with other nodes in the
networks, when regarded as a receiver of information (‘authority’).

Hence, the vector 1T fù(A) (row sums of fù(A)) contains the total
authority communicabilities of all nodes in the network.

22

Two applications (cont.)

Let now G = (V,E) be an undirected network and let L be the graph
Laplacian, L = D≠A, of G. The wave equation on G is the n◊ n system
of second order ODEs

¨u(t) = ≠Lu(t), (6)

together with prescribed initial conditions u(0) = u0, ˙u(0) = v0.

Writing L = BBT where B is the n◊m incidence matrix of the network
and defining ˙v(t) = BTu(t) we can rewrite the second-order problem (6)
as the first-order system in n+m unknowns

C
˙u(t)
˙v(t)

D

=

C
0 ≠B
BT 0

D C
u(t)
v(t)

D

. (7)

We emphasize that here B is rectangular, in general.

23

Two applications (cont.)

Taking the exponential yields the solution of (7):
C

u(t)
v(t)

D

=

C
cos(t
Ô
BBT) ≠ sin

ù
(tB)

sin

ù
(tBT) cos(t

Ô
BTB)

D C
u0
v0

D

.

Hence, the solution of the wave equation is given by

u(t) = cos(t
Ô
BBT)u0 ≠ sin

ù
(tB)v0

which, in the special case u0 = 0, reduces to

u(t) = ≠ sin

ù
(tB)v0.

Typically, this expression has to be computed for di�erent values of t.

24

Algorithms

Many problems involving generalized matrix functions boil down to one of
the following problems:

Computing fù(A)v for a given matrix A and vector v;
Evaluating sesquilinear forms of the type zúfù(A)w for given A, w
and z;
Block variants of the first two problems.

We have developed two approaches for solving these problems, one based
on Gaussian quadrature and Golub–Kahan bidiagonalization, the other one
based on Chebyshev polynomial interpolation.

F. Arrigo, M. Benzi, and C. Fenu, Computation of generalized matrix functions,
SIAM Journal on Matrix Analysis and Applications, 37(3), pp. 836–860, 2016.

J. Aurentz, A. Austin, M. Benzi, and V. Kalantzis, Stable computation of
generalized matrix functions via polynomial interpolation, Preprint, submitted to
SIMAX (2018).

25

Algorithms (cont.)

The choice of method depends on the properties of the function f and on
the distribution of the singular values of A.

The Golub–Kahan–Lanczos (GKL) type methods are expected to converge
rapidly when f takes on large values on the extreme singular values of A
and A is well-conditioned (no tiny singular values). This is the case of
f(x) = sinh(x), for example.

On the other hand, such methods cannot be expected to work well if f is
not small on the interior singular values of A. In this case Chebyshev
polynomial based interpolation can be expected to give good results. This
is the case of f(x) = sin(x), for example. For this example small singular
values are not a problem, since sin(x) ¥ 0 for x ¥ 0.

26

Gaussian quadrature
Consider the computation of the following sesquilinear form:

zúfù(A)w. (8)

Owing to the identities

zúfù(A)w = zú
A
rÿ

i=1

f(‡i)

‡i
uiuúi
B
Âw =

Âzú
A
rÿ

i=1

f(‡i)

‡i
vivúi
B

w,

where Âw = Aw, and Âz = Aúz, we can rewrite (8) as

zúfù(A)w =

Âzú
A
rÿ

i=1

f(‡i)

‡i
vivúi
B

w =

Âzúg(AúA)w, (9a)

zúfù(A)w = zú
A
rÿ

i=1

f(‡i)

‡i
uiuúi
B
Âw = zúg(AAú) Âw, (9b)

where in both cases g(t) = (

Ô
t)≠1f(

Ô
t).

27

Gaussian quadrature (cont.)

Note that if z,w are vectors such that Âz ”= w, then we can use the
polarization identity:

Âzúg(AúA)w =

1

4

[(

Âz + w)

úg(AúA)(

Âz + w)≠ (

Âz≠w)

úg(AúA)(

Âz≠w)]

to reduce the evaluation of the sesquilinear form of interest to the
evaluation of two Hermitian forms.

Hence, we can assume that Âz = w.

See G. H. Golub and G. Meurant, Matrices, Moments and Quadrature
with Applications, Princeton University Press, Princeton, NJ, 2010.

28

Gaussian quadrature (cont.)

Let Âz = w be a unit vector (i.e., ÎwÎ2 = 1). We can rewrite the quantity
(9a) as a Riemann–Stieltjes integral using the eigendecomposition of AúA:

wúg(AúA)w = wúVrg(�2
r)V
ú
r w =

rÿ

i=1

f(‡i)

‡i
|vúiw|2 =

⁄ ‡2
1

‡2
r

g(t) d–(t),

where –(t) is a piecewise constant step function with jumps at the positive
eigenvalues {‡2

i }ri=1 of AúA, defined as follows:

–(t) =

Y
_]

_[

0, if t < ‡2
rqr

i=j+1 |vúiw|2, if ‡2
j+1 Æ t < ‡2

jqr
i=1 |vúiw|2, if t Ø ‡2

r .

We use Gaussian quadrature to approximate the above Stieltjes integral.

29

Gaussian quadrature (cont.)

In turn, the quadrature formulas can be directly obtained from the
Golub–Kahan bidiagonalization of A, with starting vector w. That is, the
quadratic form (Stieltjes integral) is approximated with an ¸ point Gauss
quadrature rule given by the following expression:

G¸ := eT1 g (Bú¸B¸) e1 = eT1
1Ò
Bú¸B¸

2†
f
1Ò
Bú¸B¸

2
e1, (10)

where B¸ is the bidiagonal matrix obtained after ¸ steps of Golub–Kahan
bidiagonalization of A, with starting vector w.

One can also prescribe some of the nodes (Gauss–Radau/Gauss–Lobatto
rules).

30

Gaussian quadrature (cont.)

After ¸ steps, the Golub–Kahan bidiagonalization of the matrix A with
initial vector w yields the decompositions

AQ¸ = P¸B¸, AúP¸ = Q¸B
T
¸ + “¸q¸eT¸ , (11)

where the matrices

Q¸ = [q0,q1, . . . ,q¸≠1] œ Cn◊¸ and P¸ = [p0,p1, . . . ,p¸≠1] œ Cm◊¸

have orthonormal columns, the matrix

B¸ =

Q

cccca

Ê1 “1
.
Ê¸≠1 “¸≠1

Ê¸

R

ddddb
œ R¸◊¸

is upper bidiagonal, and the first column of Q¸ is w.
31

Gaussian quadrature (cont.)

All the {“j}¸≠1
j=1 and {Êj}¸j=1 can be assumed to be real and nonzero. With this

assumption, the CSVD of the bidiagonal matrix B¸ coincides with its SVD:

B¸ = U¸�¸VT¸ ,

where U¸ = [‚1, ‚2, . . . , ‚¸] œ R¸◊¸ and V¸ = [‹1, ‹2, . . . , ‹¸] œ R¸◊¸ are
orthogonal, and �¸ = diag(◊1, ◊2, . . . , ◊¸) œ R¸◊¸.

Combining the equations in (11) leads to

AúAQ¸ = Q¸B
T
¸ B¸ + “¸Ê¸q¸eT¸ ,

where q¸ denotes the Lanczos vector computed at iteration ¸+ 1 . The matrix

T¸ = BT¸ B¸

is thus symmetric and tridiagonal and coincides (in exact arithmetic) with the
matrix obtained when the Lanczos algorithm is applied to AúA.

32

Gaussian quadrature (cont.)

The previous approach requires computing the standard matrix function
f(
Ô
T¸), with T¸ = Bú¸B¸ tridiagonal. In alternative, we can work directly

with B¸:

Proposition
The ¸-point Gauss quadrature rule G¸ is given by

G¸ = eT1B†¸fù(B¸)e1, if Âz = w,

or
G¸ = eT1 fù(B¸)B†¸e1, if z =

Âw.

While mathematically equivalent, the two approaches can behave rather
di�erently in practice.

33

Gaussian quadrature (cont.)

A third approach uses the Golub–Kahan decomposition A = PrBrQ
ú
r :

zúfù(PrBrQúr)w = zúfù(PrUr�rVTr Qúr)w = zú(PrUr)f(�r)(QrVr)úw,

hence zúfù(A)w =

‚zúfù(Br)e1, with ‚z = P úr z and Qúrw = e1.

Assume now that ¸ < r. We can truncate the bidiagonalization process
and approximate fù(A)w as

fù(A)w ¥ P¸fù(B¸)e1

and then obtain the approximation to the bilinear form of interest as

zúfù(A)w ¥ zúP¸fù(B¸)e1.

The quality of the approximation will depend in general on the distribution
of the singular values of A and on the particular choice of f .

34

Chebyshev polynomial interpolation
The basic idea is to approximate f by an odd polynomial obtained by
interpolating f at Chebyshev nodes, and then to approximate fù(A) by
the corresponding generalized matrix polynomial. Note that this requires
first scaling A so that its largest singular value is 1, since the Chebyshev
approximation works on the interval [≠1, 1].

More precisely, after scaling we approximate fù(A)v by a (generalized)
polynomial of degree 2k + 1,

pùk(A)v =

A
kÿ

i=0
–2i+1qi(AA

ú
)

B

Av.

Here qi is a polynomial such that T2i+1(x) = qi(x
2
)x where T2i+1 is the

Chebsyhev polynomial of degree 2i+ 1.

The evaluation of this polynomial can be performed in a backward stable
manner by means of a version of Clenshaw’s algorithm. See the paper for
details and proofs.

35

Chebyshev polynomial interpolation (cont.)

Generally speaking, the Chebyshev-based approach requires far less storage
and has more inherent parallelism than the GKL-base approach (which
needs reorthogonalization). However, it requires knowledge of the largest
singular value of A, which can be estimated by a few steps of GKL.

In our test problems, the number of GKL steps necessary to estimate
‡1(A) was generally small compared to the number of steps necessary to
obtain a su�ciently good approximation of fù(A)w, at least when the
function f was of the form f(x) = sin(tx) (that is, not negligible on the
interior singular values).

The package Chebfun was used to construct a Chebyshev interpolant of
degree large enough to ensure a relative error (in the sup norm) less than
10

≠5.

36

Numerical experiments

We present some total communicability computations on two directed
networks: ITwiki and SLASHDOT. Here m = n and the computed
quantities are row sums:

C(i) = [sinh

ù
(A)1]i = eTi sinh

ù
(A)1 .

ITwiki is the Italian Wikipedia. Its adjacency matrix A is 49, 728◊ 49, 728 and
has 941, 425 nonzeros, and there is a link from node i to node j in the graph if
page i refers to page j.

SLASHDOT is a social news website on science and technology (aka “news for
nerds"). There is a connection from node i to node j if user i indicated user j as
a friend or a foe. Its adjacency matrix A is 82, 168◊ 82, 168 matrix with 948, 464

nonzeros.

37

Numerical experiments (cont.)
We approximate C(i) for ten di�erent choices of i using Gauss quadrature
with ¸ nodes using the stopping criterion

R¸ =

---x(¸) ≠ x(¸≠1)

--x(¸)-- Æ tol

and x(¸) is the approximation to C(i) obtained with ¸ steps of the method
being tested.

We also check the relative error

E¸ =

|x(¸) ≠ C(i)|
|C(i)| ,

where C(i) is the “exact" quantity, computed using ∫ ¸ terms.

The following computations were carried out with MATLAB Version 7.10.0.499
(R2010a) 64-bit for Linux, in double precision arithmetic, on an Intel Core i5
computer with 4 GB RAM.

38

Results for f(x) = sinh(x), network ITwiki

Table: Network: ITwiki, f(x) = sinh(x) (tol = 10

≠6
).

First approach Second approach Third approach

¸ E¸ ¸ E¸ ¸ E¸
1 5 3.88e-08 5 2.90e-08 6 8.02e-09

2 10 4.72e-05 9 4.68e-05 7 1.27e-08

3 5 3.20e-08 5 3.17e-08 6 7.01e-09

4 7 2.31e-05 9 2.33e-05 8 4.31e-09

5 8 4.20e-05 20 5.77e-05 8 5.91e-09

6 9 2.19e-04 24 2.13e-04 8 2.70e-08

7 6 4.26e-07 6 5.85e-07 7 3.15e-09

8 14 1.91e-04 29 2.24e-04 8 3.38e-09

9 5 8.57e-08 5 9.31e-08 6 5.07e-09

10 9 9.36e-06 8 1.12e-05 8 3.22e-10

39

Results for f(x) = sinh(x), network SLASHDOT

Table: Network: SLASHDOT, f(x) = sinh(x) (tol = 10

≠6
).

First approach Second approach Third approach

¸ E¸ ¸ E¸ ¸ E¸
1 6 4.31e-07 6 5.61e-07 9 2.45e-08

2 9 3.24e-05 15 2.26e-06 9 1.56e-08

3 7 1.24e-06 8 1.75e-06 9 1.04e-07

4 14 2.21e-04 8 2.12e-04 10 1.74e-08

5 7 2.24e-05 7 2.35e-05 10 5.16e-09

6 10 4.84e-04 19 3.72e-04 10 1.99e-08

7 7 1.20e-06 7 1.20e-06 9 6.47e-08

8 7 7.11e-07 7 7.66e-07 9 7.68e-09

9 7 5.53e-06 7 5.98e-06 9 1.32e-09

10 6 6.98e-07 6 4.92e-07 8 8.68e-09

For this function and rhese graphs, the Chebyshev-based approach was
found to be non-competitive with these three methods.

40

Numerical experiments (cont.)
Next, we present some results for the computation of sin

ù
(tB)v, where B

is the incidence matrix of a network. Here B is rectangular. This problem
arises in the numerical solution of the wave equation on networks. Two
values of the time t are considered, t = 1 and t = 4.

Network Number of nodes Number of edges
SNAP/ca-HepTh 9,877 25,998
Newman/as-22july06 22,963 48,436
Gleich/usroads-48 126,146 161,950
SNAP/as-Skitter 1,696,415 11,095,298
DIMACS10/delaunay_n24 16,777,216 50,331,601

Table: Test matrices for integrating the graph wave equation, along with the
dimensions (number of nodes ◊ number of edges) of their incidence matrices.

41

Relative runtime comparison for f(x) = sin(x)

ca
-H

ep
T

h

as
-2

2j
ul

y0
6

us
ro

ad
s-

48

as
-S

ki
tt

er

de
la

un
ay

n2
4

1

2

3

4

5

6

7

8

9

re
la

ti
ve

ru
nt

im
e

f(x) = sin(x)

Chebyshev
Lanczos dynamic

Lanczos fixed

Figure 1: Plot of relative runtimes for approximating sin⇧(B)w using the three
methods.

1

42

Relative runtime comparison for f(x) = sin(4x)

ca
-H

ep
T

h

as
-2

2j
ul

y0
6

us
ro

ad
s-

48

as
-S

ki
tt

er

de
la

un
ay

n2
4

1

3

5

7

9

11

13

15

17

re
la

ti
ve

ru
nt

im
e

f(x) = sin(4x)

Chebyshev
Lanczos dynamic

Lanczos fixed

Figure 1: Plot of relative runtimes for approximating sin⇧(4B)w using the three
methods.

1

43

Storage comparison for f(x) = sin(x)

Chebyshev Lanczos
Matrix Degree Memory Steps Memory Ratio
SNAP/ca-HepTh 19 703 KB 10 2.9 MB 4.1
Newman/as-22july06 69 1.3 MB 25 14.3 MB 10.6
Gleich/usroads-48 11 4.9 MB 6 13.8 MB 2.8
SNAP/as-Skitter 221 280 MB 88 9.0 GB 32.3
DIMACS10/delaunay_n24 15 1.3 GB 7 3.6 GB 2.8

Table: Comparison of memory requirements for the Chebyshev and Lanczos based
methods for f(x) = sin(x). The last column shows the ratio of memory required
for the Lanczos-based method to that for the Chebyshev method.

44

Storage comparison for f(x) = sin(4x)

Chebyshev Lanczos
Matrix Degree Memory Steps Memory Ratio
SNAP/ca-HepTh 51 703 KB 24 6.9 MB 9.8
Newman/as-22july06 229 1.3 MB 60 34.3 MB 25.4
Gleich/usroads-48 23 4.9 MB 12 27.7 MB 5.6
SNAP/as-Skitter 811 280 MB 240 24.6 GB 87.8
DIMACS10/delaunay_n24 37 1.3 GB 17 9.1 GB 6.8

Table: Comparison of memory requirements for the Chebyshev and Lanczos based
methods for f(x) = sin(4x). The last column shows the ratio of memory required
for the Lanczos-based method to that for the Chebyshev method

These comparisons were performed using MATLAB on a single compute node on
the Mesabi Linux cluster at UMN, with two Intel Haswell E5-2680v3 processors
and 64 GB of memory.

45

Conclusions and future work

The upshot:
Generalized matrix functions arise in several important applications
and are interesting mathematical objects to study.
For large, sparse matrices, generalized matrix functions can be
approximated via Gauss quadrature rules and Golub–Kahan
bidiagonalization: convergence will be fast if f is large on the extreme
singular values of A, and small on the rest.
Chebyshev interpolation works better for more general functions (not
small on the interior singular values).
Chebyshev approach provably backward stable if properly
implemented.
Chebyshev also better in terms of storage and parallelism.

46

	Preliminaries
	Introduction
	Definitions and basic properties
	Two applications
	Algorithms
	Numerical experiments
	Conclusions

