On the inverse problem associated to $RA = A^{s+1}R$ when $R^k = I$

Leila Lebtahi Óscar Romero Néstor Thome

Facultat de Ciències Matemàtiques, Dpt. de Matemàtiques
Universitat de València, Spain

Dpto de Comunicaciones, Universitat Politècnica de València, Spain
Instituto Universitario de Matemática Multidisciplinar
Universitat Politècnica de València, Spain

NASCA 2018
2-6 July 2018
Kalamata, Greece
Outline

1. Characterizations of \{R, s + 1, k\}-potent matrices

2. Computing \{R, s + 1, k\}-potent matrices

3. Algorithm for finding matrices \(R\) such that \(A\) is a \(\{R, s + 1, k\}\)-potent

4. Numerical example and conclusions
Definition of \(\{R, s + 1, k\} \)-potent matrices

Definition

Let \(s \in \{1, 2, 3, \ldots \} \) and \(R \in \mathbb{C}^{n \times n} \) be a \(\{k\} \)-involutory matrix, that is, \(R^k = I \). A matrix \(A \in \mathbb{C}^{n \times n} \) is called \(\{R, s + 1, k\} \)-potent if it satisfies

\[
RA = A^{s+1}R
\]

Extends to:

<table>
<thead>
<tr>
<th>Matrices</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>idempotent: (A^2 = A)</td>
<td>(R = I, s = 1)</td>
</tr>
<tr>
<td>({s + 1})-potent: (A^{s+1} = A)</td>
<td>(R = I)</td>
</tr>
<tr>
<td>involutory: (A^2 = I)</td>
<td>(R = I, s = 2, A) nonsingular</td>
</tr>
<tr>
<td>centrosymmetric: (AR = RA)</td>
<td>(R = J) is an exchange matrix, (s = 0)</td>
</tr>
<tr>
<td>mirrorsymmetric: (AR = RA)</td>
<td>(R = I \oplus J \oplus I) (on sec. diag.), (s = 0)</td>
</tr>
</tbody>
</table>
Two problems related to \{R, s + 1, k\}-potent matrices

Characterizations of \{R, s + 1, k\}-potent matrices:

L-S-T-W, Matrices \(A \) such that \(RA = A^{s+1}R \) when \(R^k = I \),

Construction of a group from \{R, s + 1, k\}-potent matrices:

C-L-S-T, On a matrix group constructed from an \{R, s + 1, k\}-potent matrix,

Linear Algebra and its Applications 461 (2014) 200–210

Direct Problem: How to construct this class of matrices?

Construction of \{R, s + 1, k\}-potent matrices for a given \(\{k\}\)-involutory matrix \(R \).
Two problems related to \(\{ R, s + 1, k \} \)-potent matrices

Characterizations of \(\{ R, s + 1, k \} \)-potent matrices:

L-S-T-W, Matrices \(A \) such that \(RA = A^{s+1}R \) when \(R^k = I \),

Construction of a group from \(\{ R, s + 1, k \} \)-potent matrices:

C-L-S-T, On a matrix group constructed from an \(\{ R, s + 1, k \} \)-potent matrix,
Linear Algebra and its Applications 461 (2014) 200–210

Direct Problem: How to construct this class of matrices?

Construction of \(\{ R, s + 1, k \} \)-potent matrices for a given \(\{ k \} \)-involutory matrix \(R \).

Inverse Problem: How to compute \(\{ k \} \)-involutory matrices \(R \)?

Design of an algorithm to construct matrices \(R \) such that a given matrix \(A \) is
\(\{ R, s + 1, k \} \)-potent.
Constructing a bijection

Let

- \(S = \{1, 2, \ldots, n_s - 1\} \) where \(n_s = (s + 1)^k - 1 \)
- \(\varphi : S \cup \{0\} \to S \cup \{0\} \)
- \(\varphi(j) := b_j \)
- \(b_j \) is the smallest nonnegative integer such that
 \[b_j \equiv j(s + 1) \pmod{(n_s)} \]

Then \(\varphi \) is a bijective function.
Characterizations of \(\{R, s + 1, k\} \)-potent matrices ...
Theorem

Let

- \(A \in \mathbb{C}^{n \times n}, \ s \in \{1, 2, 3, \ldots \} \)
- \(R \in \mathbb{C}^{n \times n} \) be a \(\{k\}\)-involutory matrix.

Then the following conditions are equivalent:

(a) \(A \) is \(\{R, s + 1, k\} \)-potent.

(b) \(A \) is diagonalizable, \(\sigma(A) \subseteq \{0\} \cup \Omega_{ns} \), \(RP_0 R^{-1} = P_0 \),

\[
RP_\varphi(j) R^{-1} = P_j \quad \text{where} \ j \in S \quad \text{and} \quad RP_{ns} R^{-1} = P_{ns},
\]

\(P_0, P_1, \ldots, P_{ns} \) are the projectors of the spectral decomposition of \(A \) associated to the eigenvalues \(0, \omega_{ns}^1, \ldots, \omega_{ns}^{n_s-1}, 1 \), respectively.
Theorem

Let

- \(A \in \mathbb{C}^{n \times n}, \ s \in \{1, 2, 3, \ldots \} \)
- \(R \in \mathbb{C}^{n \times n} \) be a \(\{k\}\)-involutory matrix.

Then the following conditions are equivalent:

(a) \(A \) is \(\{R, s + 1, k\}\)-potent.

(c) \(A^{n_s+1} = A \),

\[
\begin{align*}
RP_0 R^{-1} &= P_0, \\
RP_\varphi(j) R^{-1} &= P_j \\
RP_{n_s} R^{-1} &= P_{n_s}
\end{align*}
\]

where \(j \in S \) and \(P_0, P_1, \ldots, P_{n_s} \) are the projectors of the spectral decomposition of \(A \) associated to the eigenvalues \(0, \omega_{n_s}^1, \ldots, \omega_{n_s}^{n_s-1}, 1 \), respectively.
in terms of the group inverse of A

Theorem

Let

- $A \in \mathbb{C}^{n \times n}$, $s \in \{1, 2, 3, \ldots \}$
- $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix.

Then the following conditions are equivalent:

(a) A is $\{K, s + 1\}$-potent.

(d) $A^\# = A^{n_s - 1}$,

$$RP_0 R^{-1} = P_0, \quad RP_{\varphi(j)} R^{-1} = P_j$$

where $j \in S$ and

$$RP_{n_s} R^{-1} = P_{n_s},$$

$P_0, P_1, \ldots, P_{n_s}$ are the projectors of the spectral decomposition of A associated to the eigenvalues $0, \omega_1^{n_s}, \ldots, \omega_{n_s}^{n_s - 1}, 1$, respectively.
by using a representation of A of index 1

Theorem

Let

- $A \in \mathbb{C}^{n \times n}$, $s \in \{1, 2, 3, \ldots \}$
- $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix.

Then the following conditions are equivalent:

(a) A is $\{R, s + 1, k\}$-potent.

(e) there are nonsingular matrices: $P \in \mathbb{C}^{n \times n}$, $C \in \mathbb{C}^{r \times r}$ such that

$$A = P \begin{bmatrix} C & O & O \\ O & O & \end{bmatrix} P^{-1} \quad R = P \begin{bmatrix} R_1 & O \\ O & R_2 \end{bmatrix} P^{-1}$$

where $r = \text{rank}(A)$, $R_1 \in \mathbb{C}^{r \times r}$ and $R_2 \in \mathbb{C}^{(n-r) \times (n-r)}$ are both $\{k\}$-involutory and C is $\{R_1, s + 1, k\}$-potent.
DIRECT PROBLEM:

Construction of \(\{R, s + 1, k\} \)-potent matrices for a given \(\{k\} \)-involutory matrix \(R \)
Computing $\{R, s + 1, k\}$-potent matrices

A simplification

The cases $R = I_n$ only provide the well-known results corresponding to $A^{s+1} = A$.

Not interesting!
Computing \(\{ R, s + 1, k \} \)-potent matrices

A simplification

The cases \(R = I_n \) only provide the well-known results corresponding to \(A^{s+1} = A \). Not interesting!

Diagonalization of \(R \)

Since \(R \) is \(\{ k \} \)-involutory, there is a nonsingular matrix \(T = \begin{bmatrix} t_1 & \ldots & t_n \end{bmatrix} \) such that

\[
R = T \text{ diag } (\omega_1 I_{r_1}, \ldots, \omega_{\ell-1} I_{r_{\ell-1}}, I_\ell) \ T^{-1}
\]

where \(r_1 + \cdots + r_\ell = n \) and \(\omega_i \in \Omega_k, i = 1, \ldots, \ell. \)
Computing \(\{ R, s + 1, k \} \)-potent matrices

A simplification
The cases \(R = I_n \) only provide the well-known results corresponding to \(A^{s+1} = A \). Not interesting!

Diagonalization of \(R \)
Since \(R \) is \(\{ k \} \)-involutory, there is a nonsingular matrix \(T = \begin{bmatrix} t_1 & \ldots & t_n \end{bmatrix} \) such that
\[
R = T \, \text{diag} \left(\omega_1 I_{r_1}, \ldots, \omega_{\ell-1} I_{r_{\ell-1}}, I_\ell \right) \, T^{-1}
\]
where \(r_1 + \cdots + r_\ell = n \) and \(\omega_i \in \Omega_k, i = 1, \ldots, \ell \).

We can assume \(r_1 < r_2 < \cdots < r_\ell \). Otherwise, we compute
- \(\omega_i R \) instead of \(R \), \(i = 1, \ldots, k \) for \(k \) odd
- \(-R \) instead of \(R \), for \(k \) even

Leila Lebtahi
On the inverse problem associated to \(RA = A^{s+1} R \)
Computing \(\{R, s + 1, k\}\)-potent matrices

Diagonalization of \(A \)

\[
A = S \, \text{diag}(\lambda_1, \ldots, \lambda_n) \, S^{-1}
\]

with

\[\lambda_i \in \{0\} \cup \Omega_{ns}, \; i = 1, \ldots, n, \quad S = \begin{bmatrix} s_1 & \ldots & s_n \end{bmatrix} \quad \text{and} \quad S^{-1} = \begin{bmatrix} y_1^T \\ \vdots \\ y_n^T \end{bmatrix}\]

Spectral decomposition of \(A \)

Denoting \(P_i = s_i y_i^T \) we have

\[
A = \sum_{i=1}^{n} \lambda_i P_i
\]
Computing \(\{ R, s + 1, k \} \)-potent matrices

Diagonalization of \(A \)

\[
A = S \, \text{diag}(\lambda_1, \ldots, \lambda_n) \, S^{-1}
\]

with

\[
\lambda_i \in \{0\} \cup \Omega_{ns}, \ i = 1, \ldots, n, \quad S = \begin{bmatrix} s_1 & \ldots & s_n \end{bmatrix} \quad \text{and} \quad S^{-1} = \begin{bmatrix} y_1^T \\ \vdots \\ y_n^T \end{bmatrix}
\]

Spectral decomposition of \(A \)

Denoting \(P_i = s_i y_i^T \) we have

\[
A = \sum_{i=1}^{n} \lambda_i P_i
\]

Main idea:

Construction of the \(s_i \)'s and \(y_i \)'s in terms of the \(t_i \)'s.
Computing $\{R, s + 1, k\}$-potent matrices

Construction of the s_i’s and y_j’s in terms of the t_i’s

Since $RP_{\varphi(j)} = P_j$ must hold, we can choose

$$s_j = Rs_{\varphi(j)} \quad \text{and} \quad R^T y_j = y_{\varphi(j)}$$

for $j \in S$ in order to satisfy the equality $RA = A^{s+1}R$.

Example 1

If $R = TDT^{-1}$ is a $\{4\}$-involutory matrix and $D = \text{diag}(i, -i, 1)$

<table>
<thead>
<tr>
<th>Construction of s_j’s</th>
<th>Construction of matrix A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1 = s'_{\varphi(j)} = t_1 + t_2 + t_3$</td>
<td>$A = \omega^j P_1 + \omega^\varphi(j) P_2 + P_3$</td>
</tr>
<tr>
<td>$s_2 = s'_j = it_1 - it_2 + t_3$</td>
<td></td>
</tr>
<tr>
<td>$s_3 = t_3$</td>
<td></td>
</tr>
</tbody>
</table>

where $\omega = \omega(s+1)^4 - 1$ and $j \in S$.
Computing \(\{R, s + 1, k\}\)-potent matrices

Example 2

If \(R = TDT^{-1} \) is a \(\{4\}\)-involutory matrix and \(D = \text{diag}(-1, -1, i, i) \),

<table>
<thead>
<tr>
<th>Construction of (s'_i)'s</th>
<th>Construction of matrix (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1 = s'_{\varphi(j)} = t_1 + t_3)</td>
<td>(A = \omega^j P_1 + \omega^{\varphi(j)} P_2 + \omega^a P_3 + \omega^{\varphi(a)} P_4)</td>
</tr>
<tr>
<td>(s_2 = s'_j = -t_1 + it_3)</td>
<td></td>
</tr>
<tr>
<td>(s_3 = s'_{\varphi(a)} = t_2 + t_4)</td>
<td></td>
</tr>
<tr>
<td>(s_4 = s'_a = -t_2 + it_4)</td>
<td></td>
</tr>
</tbody>
</table>

where \(\omega = \omega_{(s+1)^4-1}, j \in S \), and moreover \(a \in S - \{j, \varphi(j)\} \) such that \(\varphi(a) \neq a \).
Computing $\{R, s + 1, k\}$-potent matrices

Example 3

If $R = TDT^{-1}$ is a $\{4\}$-involutory matrix and $D = \text{diag}(-1, -1, -i, i, 1)$

<table>
<thead>
<tr>
<th>Construction of s'_i's</th>
<th>Construction of matrix A</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1 = s'_{\varphi(j)} = t_1 + t_3 + t_4 + t_5$</td>
<td>$A = \omega^j P_1 + \omega^{\varphi(j)} P_2 + \omega^a P_3 + \omega^{\varphi(a)} P_4 + P_5$</td>
</tr>
<tr>
<td>$s_2 = s'_j = -t_1 - it_3 + it_4 + t_5$</td>
<td></td>
</tr>
<tr>
<td>$s_3 = s'_{\varphi(a)} = t_2$</td>
<td></td>
</tr>
<tr>
<td>$s_4 = s'_a = -t_2$</td>
<td></td>
</tr>
<tr>
<td>$s_5 = s'_b = t_5$</td>
<td></td>
</tr>
</tbody>
</table>

where $\omega = \omega_{(s+1)^4-1}$, $j \in S$, and moreover $a \in S - \{j, \varphi(j)\}$ such that $\varphi(a) \neq a$ and $b \in S$ such that $\varphi(b) = b$.
Computing $\{R, s + 1, 2\}$-potent matrices

Algorithm 1

Inputs: An involutory matrix R.

Outputs: A $\{R, s + 1, 2\}$-potent matrix $A \in \mathbb{C}^{n \times n}$ and the projectors P_i.

1. **Step 1** Diagonalize R as $R = T \text{ diag } (-I_r, I_{n-r}) T^{-1}$.
2. **Step 2** If $r > n - r$, change R to $-R$ and rearrange as in Step 1.
3. **Step 3** For $i = 1, \ldots, r$, compute $s_{2i-1} = t_i + t_{i+r}$ and $s_{2i} = -t_i + t_{i+r}$.
4. **Step 4** For $i = 2r + 1, \ldots, n$, set $s_i = t_i$.
5. **Step 5** Solve the linear systems $Sy_i = e_i$, where e_i are the canonical basis vectors of \mathbb{C}^n for $i = 1, \ldots, n$.
6. **Step 6** Compute $P_i = s_i y_i^T$ for $i = 1, \ldots, n$.
7. **Step 7** For $i = 1, \ldots, r$, compute $Q_i = \omega P_{2i-1} + \omega^{\varphi(1)} P_{2i}$.
8. **Step 8** Compute $A = \sum_{i=1}^{r} Q_i + \sum_{i=2r+1}^{n} P_i$.

End
Numerical example: an \(\{R, 3, 2\} \)-potent matrix

\[s = 2, \ k = 2, \ n = 4, \ \mathbf{D} = \text{diag}(-1, -1, 1, 1) \]

\[
\mathbf{R} = \begin{bmatrix}
1.2989 & -1.2069 & 3.5632 & 3.0460 \\
1.3793 & -2.7241 & 4.1379 & 4.8276 \\
-0.2759 & 1.3448 & -3.8276 & -3.9655 \\
0.6437 & -2.1379 & 4.5977 & 5.2529
\end{bmatrix}
\]

\[
\mathbf{A} = \begin{bmatrix}
-0.3820 - 0.0731i & 1.2435 - 0.0853i & -0.9103 + 0.4877i & -0.9834 + 1.1582i \\
0.3657 + 0.5202i & 0.6035 - 0.4145i & -1.0241 - 0.3251i & -1.0180 + 0.4064i \\
-0.2845 - 0.1300i & 0.4145 - 0.7803i & 0.0894 + 0.7884i & -0.6421 + 0.9591i \\
0.3657 + 0.5202i & -0.1036 + 0.2926i & -1.0241 - 0.3251i & -0.3109 - 0.3007i
\end{bmatrix}
\]
INVERSE PROBLEM:

How to compute \(\{k\}\)-involutory matrices \(R \) such that a given matrix \(A \) is \(\{R, s + 1, k\}\)-potent?
Before computing \(\{k\}\)-involutory matrices \(R \)

Definition

For a given positive integer \(s \), the square, complex matrix \(A \) is called a *potential \(\{R, s + 1, k\}\)-potent matrix* if \(A^{ns+1} = A \), or equivalently, if \(A \) is diagonalizable and \(\sigma(A) \) is contained in \(\{0\} \cup \Omega_{ns} \).

Observation

- \(R \) is completely unspecified here.
- It is generally much easier and faster to test that \(A^{ns+1} = A \) than is to determine the spectrum of \(A \) and to determine that \(A \) is diagonalizable.
Before computing \(\{k\} \)-involutory matrices \(R \)

Algorithm 2

Inputs: Integers \(s \geq 1, k \geq 2 \), and \(A \in \mathbb{C}^{n \times n} \) for some integer \(n \geq 2 \).

Output: A decision on whether \(A \) is potentially \(\{R, s + 1, k\} \)-potent or not.

Step 1 If either \(A^{ns+1} = A \) or, \(A \) is diagonalizable and \(\sigma(A) \subseteq \{0\} \cup \Omega_{ns} \), then ”\(A \) is potentially \(\{R, s + 1, k\} \)-potent”. Go to End.

Step 2 ”\(A \) is not potentially \(\{R, s + 1, k\} \)-potent, and there is no \(\{k\} \)-involutory matrix \(R \in \mathbb{C}^{n \times n} \) such that \(A \) is \(\{R, s + 1, k\} \)-potent”.

End
The notations \otimes and \oplus denote the Kronecker product and Kronecker sum of two matrices, respectively.

For any matrix $X = [x_{ij}] \in \mathbb{C}^{n \times n}$, let $v(X) = [v_k] \in \mathbb{C}^{n^2 \times 1}$ be the vector formed by stacking the columns of X into a single column vector. The expression $[v(X)]\{(j-1)n+1,\ldots,(j-1)n+n\}$, for $j = 1, \ldots, n$, denotes the j^{th} column of X.

Property: If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ then

$$\text{Ker}(A) \cap \text{Ker}(B) = \text{Ker} \left(\begin{bmatrix} A \\ B \end{bmatrix} \right)$$
We recall that the principal idempotents associated with the eigenvalues $\lambda_1, \ldots, \lambda_\ell$ are given by

$$P_t = \frac{p_t(A)}{p_t(\lambda_t)}$$

where

$$p_t(\eta) = \prod_{i=1, i \neq t}^{\ell} (\eta - \lambda_i)$$

By using the function φ and these projectors, it is possible to consider the matrix

$$M = \begin{bmatrix}
P^T_{\varphi(0)} \oplus -P_0 \\
P^T_{\varphi(1)} \oplus -P_1 \\
\vdots \\
P^T_{\varphi(n_s-1)} \oplus -P_{n_s-1} \\
P^T_{\varphi(n_s)} \oplus -P_{n_s}
\end{bmatrix}.$$
Solving the inverse problem: Idea

We focus our attention on solving the matrix equations (in the unknown R):

\[RP_{\varphi(j)} = P_j R \]

that is, to find the common solutions to

\[RP_{\varphi(j)} = P_j R, \text{ for } j \in S \cup \{0\} \quad \text{and} \quad RP_{n_s} = P_{n_s} R \]

After vectoring, the Kronecker product allows us to write

\[\nu(RP_{\varphi(j)}) = \nu(P_j R) \iff (P^T_{\varphi(j)} \otimes I_n)\nu(R) = (I_n \otimes P_j)\nu(R), \]

for $j \in S$, and analogously,

\[\nu(RP_{n_s}) = \nu(P_{n_s} R) \iff (P^T_{n_s} \otimes I_n)\nu(R) = (I_n \otimes P_{n_s})\nu(R). \]
Solving the inverse problem: Idea

By the property about kernels:

we have to find (non trivial) solutions \(v(\mathbf{R}) \) of the null space of

\[
\begin{pmatrix}
(P^T_\varphi(0) \otimes I_n) + (I_n \otimes -P_0) \\
(P^T_\varphi(1) \otimes I_n) + (I_n \otimes -P_1) \\
\vdots \\
(P^T_\varphi(n_s-1) \otimes I_n) + (I_n \otimes -P_{n_s-1}) \\
(P^T_{n_s} \otimes I_n) + (I_n \otimes -P_{n_s})
\end{pmatrix}
\]
Solving the inverse problem: Idea

By the property about kernels:

we have to find (non trivial) solutions \(v(\mathbf{R}) \) of the null space of

\[
\begin{bmatrix}
(P^T_{\varphi(0)} \otimes I_n) + (I_n \otimes -P_0) \\
(P^T_{\varphi(1)} \otimes I_n) + (I_n \otimes -P_1) \\
\vdots \\
(P^T_{\varphi(n_s-1)} \otimes I_n) + (I_n \otimes -P_{n_s-1}) \\
(P^T_{n_s} \otimes I_n) + (I_n \otimes -P_{n_s})
\end{bmatrix}
= \begin{bmatrix}
P^T_{\varphi(0)} \oplus -P_0 \\
P^T_{\varphi(1)} \oplus -P_1 \\
\vdots \\
P^T_{\varphi(n_s-1)} \oplus -P_{n_s-1} \\
P^T_{\varphi(n_s)} \oplus -P_{n_s}
\end{bmatrix}
\]

\[M \]
Solving the inverse problem: Idea

By the property about kernels:

we have to find (non trivial) solutions \(v(\mathbf{R}) \) of the null space of

\[
\begin{bmatrix}
(P_{\varphi(0)}^T \otimes I_n) + (I_n \otimes -P_0) \\
(P_{\varphi(1)}^T \otimes I_n) + (I_n \otimes -P_1) \\
\vdots \\
(P_{\varphi(n_s-1)}^T \otimes I_n) + (I_n \otimes -P_{n_s-1}) \\
(P_{n_s}^T \otimes I_n) + (I_n \otimes -P_{n_s})
\end{bmatrix} = \begin{bmatrix}
P_{\varphi(0)}^T \oplus -P_0 \\
P_{\varphi(1)}^T \oplus -P_1 \\
\vdots \\
P_{\varphi(n_s-1)}^T \oplus -P_{n_s-1} \\
P_{n_s}^T \oplus -P_{n_s}
\end{bmatrix} = M
\]

Define \(\Lambda = \{0\} \cup \Omega_{n_s} = \{\lambda_0, \lambda_1, \ldots, \lambda_{n_s}\} \) ordered in the following manner

\[0, \omega_{n_s}^1, \ldots, \omega_{n_s}^{n_s-1}, 1\]
Algorithm 3

Inputs: Integers $s \geq 1$, $k \geq 2$, and $A \in \mathbb{C}^{n \times n}$ for some integer $n \geq 2$.

Outputs: All the $\{k\}$-involutory matrices $R \in \mathbb{C}^{n \times n}$ such that A is $\{R, s + 1, k\}$-potent if any such R exist.

Step 1 Apply Algorithm 2 to A. If A is not potentially $\{R, s + 1, k\}$-potent, then no such $\{k\}$-involutory matrix R exists. Go to End.

Step 2 Compute $\sigma(A)$. Suppose that A has ℓ distinct eigenvalues. Since $\sigma(A) \subseteq \Lambda$, there are ℓ indices j_t with $0 \leq j_1 < j_2 < \cdots < j_\ell \leq n_s$ such that $\sigma(A) = \{\lambda_{j_1}, \lambda_{j_2}, \ldots, \lambda_{j_\ell}\}$.

Step 3 Compute the principal idempotents associated with the eigenvalues of A.

Step 4 Compute $\varphi(j_1), \varphi(j_2), \ldots, \varphi(j_\ell)$.

Step 5 Compute the submatrix M_A of M containing only those rows corresponding to eigenvalues of A.
Algorithm 3 (cont.)

Step 6 Find the general solution \(v \) to \(M_A v = 0 \). The \(n^2 \times 1 \) vector \(v \) will depend on \(d = \text{dim}(\ker(M_A)) \) arbitrary parameters.

Step 7 If \(v = 0 \), or equivalently, if \(d = 0 \), then go to Step 11.

Step 8 Treating \(v \) as \(v = v(R) \) for an \(n \times n \) complex matrix \(R \) containing \(d \) parameters, recover \(R \) from \(v \).

Step 9 Determine the allowed values for the \(d \) arbitrary parameters so that \(R^k = I_n \). If there are no allowed parameter values, then go to Step 11.

Step 10 The output is the set of all matrices \(R \) whose parameter values are allowed.

Step 11 "There is no \(\{ k \} \)-involutory matrix \(R \) such that \(A \) is \(\{ R, s + 1, k \} \)-potent."

End
Example

For \(s = 2, \ k = 4 \) and

\[
A = \begin{bmatrix}
-49i & 40i & -10i \\
18 - 78i & -15 + 64i & 4 - 16i \\
72 - 72i & -60 + 60i & 16 - 15i
\end{bmatrix},
\]

Algorithm 3 provides the solutions

\[
R = \begin{bmatrix}
x & y & -\frac{y}{4} \\
t & -\frac{5t}{6} + \frac{5x}{3} + 2y & \frac{2t}{9} - \frac{5y}{6} - \frac{32x}{45} \\
4t - 6y - \frac{49x}{5} & -\frac{10t}{3} + \frac{32x}{3} + 8y & \frac{8t}{9} - \frac{10y}{3} - \frac{173x}{45}
\end{bmatrix}
\]

where \(x, y, t \in \mathbb{C} \).
Conclusions

- An algorithm was designed to solve the direct problem related to \(\{R, s + 1, k\} \)-potent matrices considering \(s \geq 1 \).

- An algorithm was designed to solve the inverse problem related to \(\{R, s + 1, k\} \)-potent matrices considering \(s \geq 1 \).

- The case \(s = 0 \) can also be treated but, in this case, matrices are not necessarily diagonalizable. So, both diagonalizable and not diagonalizable cases have to be considered separately.
THANK YOU VERY MUCH!

E-mail: leila.lebtahi@uv.es