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Context, Motivation & Problem

» In many machine learning applications the data used is provided with a
very large number of features.

» Where only few are relevant and not redundant.
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Context, Motivation & Problem
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» Eachobjectx,,(n=1...,N)is characterized by a large number of

featuresf, (r =1 ...,d).

» X, represents the value of then th data object on the r-th feature.

» The performance of machine learning algorithms might be degraded

when applied on such high dimensional data.



Solution: Feature Selection
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Feature Selection:
Learning Contexts
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Hypothesis-Margin
Supervised Context

Kira K, Rendell LA (1992)

» Nearmiss of an instance x,, is the nearest
sample to x,, with a different label

» Nearhit of an instance x,, is the nearest
sample to x,, with the same label

» Hypothesis Margin of x,, denoted p(x,,) is
the difference between the distance to its
nearmiss and the distance to its nearhit.

+ Hypothesis Margin is the largest distance
an instance of the dataset can travel
without altering the labeling of instances.

Gilad-Bachrach R., Navot A., Tishby (N. 2004)

p(x, ) = diff (x,, , Nearmiss(x,)) — diff ( x,, , Nearhit(x,))




Hypothesis-Margin

Constrained Context

Yang M., Song J. (2010)

» Nearmiss of an instance x,, is °
®
the nearest sample to x,, ®
» Nearhit of an instance x,, is the :o
.

nearest sample to x,,

p(x,, x,,) =diff (x,,, Nearhit(x,,)) — diff ( x,, , Nearhit(x,,))




Constrained Weighted Feature
Selection

» Weighted Hypothesis Margin of (x,,, x,,)

p(w, (xp, X)) = @ [diff (x,, ,Nearhit(x,,)) — diff ( x,, , Nearhit(xy,))]

» Overall Weighted margin

p=®" Y o ec|diff (x, Nearhit(xy,)) — diff ( x, , Nearhit(xy,))]

\ )

Sun Y. and Li J. (2006) IYZ
» Problem Formulation:

— We want to find the weight vector w that maximizes the overall margin
— Then the Problem is defined as

max w’'z s.t. |lw||[* =1and @ =0
o)

where w =(w1, ..., wr, ..., w,)



Relief-Sc
( Relief with Side Constraints)
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Cannot-link Constraints
Set

Zy = Zy + |xpy — Nearhit(x;,y )| — | X — Nearhit(x,, )|




Relief-Sc
( Relief with Side Constraints)
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Algorithmic comparison:
Simba-Sc

Yang M., Song J. (2010)
1[(xyy — Nearhit (X ))* (xpr — Nearhit(x,,))?

T 2Ty — Nearhit el Ttn — Nearhit (o)l




Experimental Results:

Classification Accuracy of Different Feature Selection Algorithms
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Experimental Results:

Solutions Comparisonof Relief-Sc and Simba-Sc
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Selection of Cannot-link Constraint Set

X x
= = 1. Find the Laplacian matrix L of the data
L] L 2. Find eigenvectors V and eigenvalues A of L=D-S
e L] _ _ .
3. Find the point of minimum value on the
® ® second eigenvector v,

Cannot-link Constraints
Set vz

-1 ZEero +1

4. Find the data couple that can most change the position of the
minimum value v, ;) on v, such that:

d'!-'g(i*}

d'ﬁnm

(_;]i;ns:J xm»:) — J‘g??i‘ﬂlrn,me{ 1...N}




Selection of Cannot-link Constraint Set

m*

Sensitivities of (x,,, x,,)

We find the sensitivity of each couple
and then The maximum (x,+, x;,,+)
among all.

4. Thus, we calculate the sensitivity of v,

to each couple in the dataset and store them
in a matrix.

Now, we find the data having the highest sensitivity

d.i‘_'g T
(xn*:xm*): a.?‘g?nﬂi‘?n,mE{1___N} dsi;]
Where
dvg(i) N ’Ug [OL [9snm]vyp
, - Zp}z p(it)
ds, Ay — Ap

ZN UE €n _Em)(en Em)T]vP
p>2 )\2 . )\ Up(i*)




Selection of Cannot-link Constraint Set

5. After finding the indexes (n",m" ), We Actively query for a
constraint on this particular couple.

6. Thus, obtaining the constraints of highest utility.
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However, we can’t ask the user a lot of questions, so the number
of constraints we can obtain is limited



Constraints Propagation

« Relief family margin-based algorithms need a set of points
that is sufficiently big to calculate the margin.

» we guery an oracle for constraints

» we might not be able to ask for a large number of queries

Therefore we needed a constraint propagation method

+
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(a) Data (b) Instance-level constraints  (c¢) Propagated information



Constraints Propagation

We initialize the constraints matrix Q,,,,
(from previous constraints selection step)
as follows:

Q. - {1. if (Tp,2m)€C

0. otherwise

We calculate the normalized neighborhood
similarity graph P,

0. otherwise

T —Tm :
P, = {f'_” o , if x,, € -NN(z,)

Finally we use the following matrix
completion equation to propagate our
constraint on B,,,, obtaining G*

G =(1- r:]z(f — nP]_lQ(f — rrP)_l

1]
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g

Iris data
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Where I is the identity matrix and a is a regularization parameter




Conclusion

~We proposed Relief-Sc, a weighted feature selection

algorithm that works in a constrained environment.

- |t is said to find a unique relevant feature subset in a

closed-form.

- We are currently working on the experimental results of
Constraints selection and Propagation, we expect to
obtain better feature selection with a minimum number of

queried constraints.
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