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In this talk we propose an alternative approach :

A new type of restated Krylov method
The new method

Avoids the Lanczos algorithm
Avoids polynomial filtering

It 1s neither “explicit restart” nor “implicit restart”



Plan:

Part1l: The new method

part 2 . Applications

Low-rank approximations of large sparse matrices.

Computing small eigenvalues or small singular values
via Inexact inversions.



Notations

(G a large sparse symmetric nxn matrix, GT=G,

with eigenvalues AM 2 A, 2.2 A,
and eigenvectors Vi, Vo, «ee LV,
ij:xjvj, j=1,...,n. GV =VD

V=[,,Vy,..,v,] , VIV=VVI=]|
D=diag{A;,A, , .. ,A}

G=VDVT=ZA v,V



AlIMm: Computing a small number, k, of exterior eigenpairs.

For example, k eigenvalues with the largest moduli.
A=A = 2| A 2 2| Ay 2 .. 2 | A

Vl,Vz, eoo ,Vk, eoo ,Vk+£, oo ,Vn

¢ s the length of the restarted Krylov sequences

In our experiments £ =Kk + 40



The qgth I1teration, =1, 2, ...,

Starts withan nx(k+¢) matrix,

[Vq11 1] )

that has orthonormal columns.

V

ISan NXk matrix that contains the current
Ritz vectors.

q—l

Y

ISan NnX/{ matrix that contains “new’ information
which is obtained from a Krylov matrix.

q-l



The qgth Iteration, =1, 2, ...,

Step 1: Compute the new Ritz matrix V.
Step 2: Compute a new Krylov information matrix B, .
Step 3: Obtain Z, by orthogonalizing B, againstV .
Step 4 : Compute, Y, , an orthonormal basis of Z, .

Step5: Define  X,=[V,, Y,]

The matrices Vq, Yq and Xq has orthonormal columns.



Step1: Compute the Rayleigh quotient matrix

— T
Sq = Xgu' G Xq..

and the k largest eigenvalues of Sq
D@ > A, @] > > A D] > .. > | A, )
The related k eigenvectors are assembled into the £xk matrix
W = [wy, Wy, oo, wy ]
and used to construct the new matrix of Ritz vectors
Vq = xq_lwq

Since Xg., and VWV, have orthonormal columns, V/, inherits
this property.



The monotonicity property

The eigenvalues of the matrix V"GV,
2@ 2 @] > .. > [A, @)
interlace those of the matrix [V, Y 1" G[V,,Y,]
|xl(q+1)| > |7\.2(Q+1)| > > |xK(q+1)|

and therefore
Ayl 2 [y @] 2 [A, )

for j=1,..,k and q=1,2,... .

This holds for any choice of B, !



The basic Krylov matrix
B, = [by, b, ..., b,]

The columns span a Krylov subspace of G that Is generated
by the following three term recurrence relation

For j=2,...,k
b;=G b,
Orthogonalize b; against b;
Orthogonalize b; against b,

Normalize bj .



The starting vector Db,

IS a unit vector in the direction
Ve€ =1V, Vs e Vi@ =V H V) + Lty

where V,+V,+ ...+ v, arethe current Ritz vectors .

Computing b, :  Set by,=V,e ,
normalize b, .

Computing b, :  Set b, = GDb,
orthogonalize b, against b, |,
normalize b, .



Comparison with “Explicit Restart”

Step 1: Compute the new Ritz matrix V,

Step 2.
Step 3:
Step 4 -
Step 5:

Compute a new Krylov information matrix B, .
Obtain Z, by orthogonalizing B, againstV, .

Compute, Y, , an orthonormal basis of Z, .

q
Define X, =[Vg, Yq]

Step1: Compute a Ritzmatrix V, from T, .

Step 2 : Compute a new tridiagonal matrix Tq .

( Starting from the direction of qu )



Comparison with “Implicit Restart”

Step 1: Compute the new Ritz matrix V,
Step 2: Compute a new Krylov information matrix B, .
Step 3: Obtain Z, by orthogonalizing B, againstV, .

Step 4 : Compute, Y, , an orthonormal basis of Z, .

q
Step5: Define X, =[V,, Y,]
Step 1: Compute the new Ritz matrix V, from T, .

Step 2: Compute a new tridiagonal matrix T, ,
( Using ““polynomial filtering” . )



Applications

* Low-rank approximations of large sparse matrices.

* Exact/Inexact inversions:

Inner-outer iterative methods for calculating
small eigenvalues and small singular values.



Low-rank approximation

of alarge sparse m x n matrix A

IS carried out by replacing G with AT A

In practice G is never computed . Instead, matrix-vector products of the form

z=Gx are computed in two steps: Firstcompute y=Ax then z=ATy .

Advantage: The left singular vectors ( and left Ritz vectors )
are not needed. This leads to significant saving of computer

storage with respect to Lanczos bidiagonalization. (The final
approximation can be expressedas AV VT =UVT )



Computing small eigenvalues

Assume for simplicity that the eigenvalues of G satisfy
M =A > .2A, >0

and we want to compute the k smallest eigenvalues.

In this case there Is a minor change in Step 1.



Step 1* : Compute the Rayleigh quotient matrix

Sq = XguT G X,

and the k smallest eigenvalues of Sq
M@ > A0 > >, @ > > )0
The related k eigenvectors are assembled into the £ xk matrix
W = [wy, Wy, e, wy ]
and used to construct the new matrix of Ritz vectors
V=X W,

Since Xg.. and W, have orthonormal columns, V, inherits
this property.



Exact 1nversions

This improvement is carried out by replacing G with G in the

construction of the Krylov matrix  B,=[b;,b,,....b,] .

Here the columns of B, spana Krylov subspace of G thatis

generated by the following three term recurrence relation
For j=2,...,Kk

Set by=G"b,
Orthogonalize b; against b;
Orthogonalize b; against b,

Normalize bj



Exact 1nversions

In practice, the columns of Bq span a Krylov subspace of G

that is obtained by using a direct method to solve the related
linear systems.

For j=2,...,k

Compute D; by solving the linear system GXx=Db;,
j j

Orthogonalize ; against 0j-1

Orthogonalize 0; against ;-2

Normalize bj



Comparison with “Implicit Restart”

Step 1: Compute the smallest Ritz eigenpairs V, of G .

Step 2:
Step 3:
Step 4 -
Step 5:

Step 1:

Step 2.

Compute a new Krylov information matrix B, of G .

q
Obtain Z, by orthogonalizing B, againstV, .

Compute, Y, , an orthonormal basis of Z, .

q ]
Define  X;=[V, Yq]

Use Tq_1 to compute the largest Ritz eigenpairs of G™1 .

Compute anew Lanczos matrix T, of G .



Inexact 1nversions

The columns of Bq approximate a Krylov subspace of G™ that is

is obtained by using an iterative method to solve the related
linear systems. (Such as CG, MINRES or GMRES, equiped with a
suitable preconditioner.)

For j=2,...,Kk
Set bj to be an approximate solution of the linear system GX= bj_1 :

Orthogonalize D; against D;_; .

Orthogonalize D; against D, .

Normalize bj



Comparison with “Implicit Restart”

Step 1: Compute the smallest Ritz eigenpairs V, of G .

Step 2 :
Step 3:
Step 4 -
Step 5:

Step 1:
Step 2.

Compute an approximate Krylov matrix B, of G .
Obtain Z, by orthogonalizing B, against V, .

Compute, Y, , an orthonormal basis of Z, .

q ]
Define X, =[V,, Yq]

Use T, tocompute the largest Ritz eigenpairs of G .

Compute an approximate Lanczos matrix Tq of G1.



Computing small singular values

A is a large sparse m x n matrix with singular values
Gy 260y 2 ..20,20 ,

and we want to compute the k smallest singular triplets.

This task is carried out by introducing the following

modifications in Steps 1 and 2 of the basic iteration.



Computing small singular values:

The qgth iteration, g=1, 2, ... .

Step 1** : Compute the k smallest singular values of AX

and the related matrix of right Ritz vectors V, .
Step 2** : Compute an approximate Krylov matrix B, of (ATA)™.

Step 3: Obtain Z, by orthogonalizing B, againstV, .

Step 4 : Compute, Y, , an orthonormal basis of Z, .

q ]
Step5: Define  X,=[V,, Y,]



Step 1** :  Compute the Rayleigh matrix
H, = AXq_1
and the k smallest singular values of H,
¥ >062>.206,,%92>.20c,9

The related K right singular vectors are assembled into the £ X K matrix
Wi =1[wg, wy,s oo, wi ]
and used to construct the new matrix of Ritz vectors
V= X, W,

Since X, and W, have orthonormal columns, V, inherits
this property.



Step 2** : Inexact inversion of ATA

The columns of B, approximate a Krylov subspace of (ATA)L
using an Iterative method to solve the related linear systems.

For j=2,...,k

Set bj to be an approximate solution
of the linear system ATAX= b;., .
Orthogonalize b; against b; ; .
Orthogonalize b; against b;, .

Normalize bj



Step 1:
Step 2:
Step 3:
Step 4:
Step 5:

Step 1:

Step 2:

Computing small singular triplets

The new method
Compute Vq the smallest right Ritz vectors of A .
Compute an approximate Krylov matrix B, of (ATA)™.
Obtain Z, by orthogonalizing B, againstV, .

Compute, Y, , an orthonormal basis of Z, .

q ]
Define X, =[V,, Y,]

Lanczos bidiagonalization
Use Bq_l to compute the largest Ritz eigenpairs of A™ .

Compute a lower bidiagonal matrix B, from A™ .



Concluding remarks

The new method is useful for the following purposes:

* A reduced storage approach for calculating low-rank
approximations of large matrices.

* The use of exact/inexact inversions for calculating
small eigenvalues and small singular triplets.
( In this case most of the computation time is spent
on the linear solver.)

* The method is easily adapted to use “shift and invert”
techniques.



The END

Thank You



