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      In this talk we propose an alternative approach : 

 

           A new type of restated Krylov method 

 

      The new method 

 

             Avoids the  Lanczos  algorithm 
 

             Avoids polynomial filtering 
 

      It is  neither  “explicit restart”  nor  “implicit restart” 



 

  Plan : 
 

    Part 1 :   The new method 

 

    part 2 :   Applications 
 

     Low-rank approximations of  large sparse matrices. 
 

     Computing small eigenvalues or small singular values  

      via  inexact inversions. 

 



 

            Notations 
 

     G   a  large sparse symmetric  n x n  matrix ,  GT = G , 
 

            with  eigenvalues           l1    l2   ...   ln 

 

            and   eigenvectors          v1 , v2 ,   …   , vn 
 

                               G vj =  lj vj ,   j = 1, … , n .      G V = V D 

 

                          V = [v1 , v2 , … , vn]   ,    VT V = V VT = I 
 

                                 D = diag { l1 , l2  ,  …  , ln } 
 

                                        G = V D VT = S lj vj vj
T 

 



 

 Aim: Computing a small number, k , of exterior eigenpairs. 
 

               For example,  k  eigenvalues with the largest moduli. 

 
 

                    |l1|  | l2|  ...  | lk|  ...  | lk+l|  ...  | ln|    
 

 

                    v1 , v2 ,   …   , vk ,   …   , vk+l ,   …   , vn    

 

 

    l    is the length of the restarted Krylov sequences 

 
 

    In our experiments       l = k + 40   

 



 

     The  q th  iteration,   q = 1, 2, … , 
 

   Starts with an   n x  (k + l )   matrix ,      

 

                                     Xq-1 = [ Vq-1 ,  Yq-1 ]  ,   
 

  that has orthonormal columns . 
 

     Vq-1     is an  n x k  matrix that contains the current  

                   Ritz vectors. 
 
 

     Yq-1    is an  n x l  matrix that contains “new” information 

                 which is obtained from a  Krylov matrix. 

                 
 

             

 



 

     The  q th  iteration,   q = 1, 2, … , 
 
 

   Step 1 :   Compute the new  Ritz matrix    Vq     .    

 

  Step 2 :   Compute a new Krylov information matrix  Bq  .  
 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 

 

 The matrices Vq ,  Yq  and  Xq  has orthonormal columns.           

 



 
 

   Step 1 :    Compute the  Rayleigh quotient matrix         
 

                                                Sq = Xq-1
T G Xq-1           

 

   and the  k  largest eigenvalues of   Sq    
 

                 |l1
(q)|  |l2

(q)|  ...  |lk
(q)|  ...  | ll

(q)| 
 

   The related  k  eigenvectors are assembled into the  l x k  matrix 
 

                  Wq = [w1 , w2 , …, wk ] 
 

  and used to construct the new matrix of  Ritz vectors 
 

                            Vq = Xq-1 Wq    . 
 

   Since  Xq-1  and  Wq  have orthonormal columns,  Vq  inherits  

   this property. 
 



 

   The monotonicity property 
 

   The eigenvalues of  the matrix      Vq
T G Vq     

 

              |l1
(q)|  |l2

(q)|  ...  |lk
(q)| 

 

  interlace those of the matrix    [ Vq ,  Yq ]T G [ Vq ,  Yq ]   
 

                    |l1
(q+1)|  |l2

(q+1)|  ...  |lk
(q+1)| 

 

  and therefore 

                               |lj|  |lj 
(q+1)|  |lk

(q)| 
 

   for    j = 1, …, k      and     q = 1, 2, …   .    
 

  This holds for any choice of   Bq   ! 
 



      The basic  Krylov  matrix 
 

                 Bq = [b1 , b2 , …, bl ]         
 

 The columns span a  Krylov subspace of  G  that is generated 

 by the following three term recurrence relation 
 

   For  j = 2, … , k     
 

               bj = G bj-1 
 

               Orthogonalize bj  against  bj-1         
 

               Orthogonalize bj  against  bj-2       
 

               Normalize bj    . 
 

 



      The  starting  vector   b0 
 

     is a unit vector in the direction  
 

            Vq e = [v1 , v2 , …, vk ] e = v1 + v2 + …+ vk  
 

     where    v1 + v2 + …+ vk   are the current Ritz vectors .         

 

  Computing b0 :     Set   b0 = Vq e  ,  

                                 normalize  b0  .        

 

  Computing b1 :     Set   b1 = G b0   

                                 orthogonalize b1 against  b0  , 

                                 normalize  b1  . 
 



 

   Comparison with  “Explicit Restart” 
 

   Step 1 :   Compute the new  Ritz matrix    Vq     .    
 

  Step 2 :   Compute a new Krylov information matrix  Bq  .  
 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 

 

     Step 1 :   Compute  a  Ritz matrix   Vq   from  Tq-1    .    
 

     Step 2 :   Compute a new tridiagonal matrix  Tq  .  

                    ( Starting from the direction of    Vq e  . ) 
 

 

 

 

 

 



 

   Comparison with  “Implicit Restart” 
 

   Step 1 :   Compute the new  Ritz matrix    Vq     .    
 

  Step 2 :   Compute a new Krylov information matrix  Bq  .  
 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 

   Step 1 :   Compute the new Ritz matrix   Vq   from  Tq-1    .    
 

   Step 2 :   Compute  a new tridiagonal matrix  Tq  ,  

                   ( Using  “polynomial filtering” . )  

 



 

     Applications 
 

 *  Low-rank approximations of  large sparse matrices. 

 

 *  Exact / Inexact  inversions : 
 

   Inner-outer iterative methods for calculating 

   small eigenvalues and small singular values. 
 

    



  Low - rank  approximation 
 

  of  a large sparse  m x n  matrix  A 
 

  is carried out by replacing   G  with   AT A 
 

  In practice  G  is never computed .  Instead,  matrix-vector products of the form 
 

   z = G x   are computed in two steps:  First compute   y = A x   then   z = AT
 y  . 

 

  Advantage :  The left singular vectors ( and left Ritz vectors ) 
 

  are not needed.  This leads to significant saving of  computer 
 

  storage with respect to Lanczos bidiagonalization.  ( The final 

  approximation can be expressed as   A V VT = U VT . ) 

 



 

 Computing  small  eigenvalues 
 

  Assume for simplicity that the eigenvalues of  G  satisfy 

 

                             l1    l2    ...    ln >  0   

 

  and we want to compute the  k  smallest eigenvalues. 

 

 

  In this case there is a minor change in Step 1. 

 



 
 

   Step 1* :    Compute the  Rayleigh quotient matrix         
 

                                                Sq = Xq-1
T G Xq-1           

 

   and the  k  smallest eigenvalues of   Sq    
 

                l1
(q)    l2

(q)   ...   ln+1-k
(q)   ...   ln

(q)   
 

   The related  k  eigenvectors are assembled into the  l x k  matrix 
 

                  Wq = [w1 , w2 , …, wk ] 
 

  and used to construct the new matrix of  Ritz vectors 
 

                            Vq = Xq-1 Wq 
 

   Since  Xq-1  and  Wq  have orthonormal columns,  Vq  inherits  

   this property. 
 



 

        Exact  inversions 
 

 This improvement is carried out by replacing  G  with  G-1  in the 

 construction of  the  Krylov matrix      Bq = [ b1 , b2 , …, bl ]  . 
 

 Here the columns of  Bq  span a  Krylov subspace of  G-1  that is 
 

 generated by the following three term recurrence relation 
 

       For  j = 2, … , k     
 

               Set     bj = G-1
 bj-1 

               Orthogonalize bj  against  bj-1         

               Orthogonalize bj  against  bj-2       

               Normalize bj    . 



 

        Exact  inversions 
 

   In practice, the columns of  Bq  span a  Krylov subspace of  G-1  

   that is obtained by using a  direct method  to solve the related  

   linear systems. 

 

          For  j = 2, … , k     
 

               Compute  bj   by solving the linear system    G x = bj-1 
 

               Orthogonalize bj  against  bj-1         
 

               Orthogonalize bj  against  bj-2       
 

               Normalize bj    . 



 

   Comparison with  “Implicit Restart” 
 

   Step 1 :   Compute the smallest  Ritz  eigenpairs  Vq    of   G  . 
 

  Step 2 :   Compute a new Krylov information matrix  Bq   of   G-1  . 
 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 

  Step 1 :   Use  Tq-1  to compute the largest Ritz eigenpairs of   G-1
  . 

 

  Step 2 :   Compute  a new Lanczos matrix  Tq   of   G-1
  . 

 

 



 

        Inexact  inversions 
 

   The columns of   Bq  approximate a  Krylov subspace of  G-1  that is 

   is obtained by using an   iterative method  to solve the related  

   linear systems. ( Such as  CG ,  MINRES or GMRES , equiped with a 

   suitable preconditioner. ) 

 

     For  j = 2, … , k     
 

    Set  bj  to be an approximate solution of the linear system  G x = bj-1   .   
 

    Orthogonalize  bj  against  bj-1   . 
 

    Orthogonalize  bj  against  bj-2   .   
 

     Normalize  bj    . 
 



 

   Comparison with  “Implicit Restart” 
 

   Step 1 :   Compute the smallest  Ritz  eigenpairs  Vq    of   G  . 
 

  Step 2 :   Compute an approximate Krylov matrix  Bq   of   G-1  . 
 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 

  Step 1 :   Use  Tq-1  to compute the largest Ritz eigenpairs of   G-1
  . 

 

  Step 2 :   Compute  an approximate Lanczos matrix  Tq   of   G-1
  . 

 

 



 

 Computing  small  singular values 
 

  A  is a large sparse  m x n  matrix with singular values 
 

                         s1    s2    ...    sn   0   , 
 

  and we want to compute the  k  smallest singular triplets. 
 

 

       This task is carried out by introducing the following 
 

   modifications in Steps 1  and  2  of the basic iteration. 

 



 

             Computing  small  singular values:  
 

                 The  qth  iteration ,  q= 1 , 2 , …  . 
 

 

   Step 1** :  Compute the  k  smallest  singular values of   A Xq-1 

                      and  the related matrix of right Ritz vectors  Vk  . 

 

  Step 2** :  Compute an approximate Krylov matrix  Bq  of  (ATA )-1. 

 

  Step 3 :   Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :   Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :   Define       Xq = [ Vq , Yq ]       

 



 
 

   Step 1** :    Compute the  Rayleigh matrix         
 

                                                Hq = A Xq-1           
 

   and the  k  smallest singular values of   Hq    
 

                s1
(q)    s2

(q)   ...   sn+1-k
(q)   ...   sn

(q)   
 

 The related  k  right singular vectors are assembled into the  l x k  matrix 
 

                  Wq = [w1 , w2 , …, wk ] 
 

  and used to construct the new matrix of  Ritz vectors 
 

                            Vq = Xq-1 Wq 
 

   Since  Xq-1  and  Wq  have orthonormal columns,  Vq  inherits  

   this property. 
 



 

   Step  2** :  Inexact  inversion  of   ATA 
 

   The columns of  Bq  approximate a  Krylov subspace of   (ATA)-1  

   using an  iterative method to solve the  related  linear systems.  

 

    For  j = 2, … , k     
 

    Set   bj   to be an approximate solution  

   of  the linear system      ATA x = bj-1   .   
 

    Orthogonalize  bj  against  bj-1   . 
 

    Orthogonalize  bj  against  bj-2   .   
 

     Normalize  bj    . 
 



              Computing  small singular  triplets 
 

                           The  new  method 
 

   Step 1 :  Compute  Vq  the smallest right Ritz  vectors  of   A  . 
 

  Step 2 :  Compute an approximate Krylov matrix  Bq  of  (ATA)-1 . 
 

  Step 3 :  Obtain  Zq  by orthogonalizing Bq  against Vq   .  
 

  Step 4 :  Compute, Yq  , an orthonormal basis of Zq  .   
 

  Step 5 :  Define       Xq = [ Vq , Yq ]    .  

 

                   Lanczos  bidiagonalization 

  Step 1 :  Use  Bq-1  to compute the largest Ritz eigenpairs of   A-1
  . 

 

  Step 2 :  Compute a lower bidiagonal matrix   Bq   from   A-1
  . 

 

 



 

    Concluding  remarks 
 

    The new method is useful for the following purposes: 
 

  * A reduced storage approach for calculating low-rank 

      approximations of large matrices. 
 

  *  The use of  exact / inexact inversions for calculating 

       small eigenvalues and  small  singular triplets. 

      ( In this case most of the computation time is spent 

         on the linear solver. ) 
 

  *  The method is easily adapted to use  “shift and invert” 

       techniques.   

 

 

 *   Nonnegative matrix factorization. 

 



 

          The  END  

 

 

       Thank  You 

 
 


