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Inverse Problem

By the knowledge of some “observed” data g (i.e., the effect),

find an approximation of some model parameters f (i.e., the cause).

Given the (noisy) data g ∈ G,
find (an approximation of) the unknown f ∈ F such that

Af = g

where A : F −→ G is a known linear operator,
and F ,G are two functional (here Hilbert or Banach) spaces.

True image Blurred (noisy) image Restored image

Inverse problems are usually ill-posed, they need regularization techniques.



Solution of inverse problems by minimization

Variational approaches are very useful to solve the functional equation

Af = g .

These methods minimize the Tikhonov-type variational functional Φα

Φα(f ) =
1

p
‖Af − g‖pG + αR(f ) ,

where 1 < p < +∞ , R : F −→ [0,+∞) is a (convex and proper) func-
tional, and α > 0 is the regularization parameter.

The “data-fitting” term ‖Af − g‖pG is called residual (usually in mathe-
matics) or cost function (usually in engineering).

The “penalty” term R(f ) is often ‖f‖qF , or ‖∇f‖qF or ‖Lf‖qF , for q ≥ 1
(such as the Hölder conjugate of p) and a differential operator L which
measures the “non-regularity” of f .



Several regularization methods for ill-posed functional equations by vari-
ational approaches have been first formulated as minimization problems in
Hilbert spaces (i.e., the classical approach). Later they have been extended
to Banach spaces setting (i.e., the more recent approach).

Convex optimization in Banach spaces (such as L1 for sparse recovery or
Lp, 1 < p < 2 for edge restoration) helps to derive new algorithms.

Hilbert spaces Banach spaces
Benefits Easier computation Better restoration

(Spectral theory, of the discontinuities;
eigencomponents) Sparse solutions

Drawbacks Over-smoothness Theoretical involving
(bad localization of edges) (Convex analysis required)



Minimization of the residual
by gradient-type iterative methods

For the Tikhonov-type functional Φα(f ) = 1
p‖Af − g‖pG + αR(f ) , the

basic minimization approach is the gradient-type iteration, which reads as

fk+1 = fk − τkψα(fk, g)

where

ψα(fk, g) ≈ ∂

(
1

p
‖Af − g‖pG + αR(f )

)
,

i.e., ψα(fk, g) is an approximation of the (sub-)gradient of the minimization
functional Φα at point fk, and τk > 0 is the step length.

For Φα(f ) = 1
2‖Af − g‖

2
2 + α1

2‖f‖
2
2 in L2 Hilbert space, from

∂Φα(f ) = ∇Φα(f ) = A∗(Af − g) + αf

we have the simplest iterative method, i.e., the (mod.) Landweber method,

fk+1 = fk − τ (A∗(Afk − g) + αfk)

where τ ∈ (0, 2(‖A‖22 + α)−1) is a fixed step length [Scherzer, 1998].



Minimization in Banach spaces

The computation of the (sub-)differential of the Tikhonov functional re-
quires the (sub-)differential of the norm of the Banach space involved. Here
the key tool is the so-called “duality map”.

A duality map is a special function which allows us to associate an element
of a Banach space B with an element (or a subset of elements) of its dual B∗.

Theorem (Asplund)
Let B be a Banach space and let p > 1. A duality map JB is the subdiffer-
ential of the convex functional f : B −→ R defined as f (b) = 1

p‖b‖
p
B :

JB = ∂f = ∂

(
1

p
‖ · ‖pB

)
.

The (sub-)differential of the residual 1
p‖Af −g‖

p
G , by means of the duality

map JG , is the following

∂

(
1

p
‖Af − g‖pG

)
= A∗JG(Af − g) .



Landweber iterative method in Hilbert spaces

A : F −→ G A∗ : G −→ F Φα(f ) = 1
2‖Af−g‖

2
G+α1

2‖f‖
2
F

fk+1 = fk − τ (A∗(Afk − g) + αfk)

Landweber iterative method in Banach spaces

A : F −→ G A∗ : G∗ −→ F ∗ Φα(f ) = 1
p‖Af−g‖

p
G+α1

p‖f‖
p
F

fk+1 = JF ∗
(
JFfk − τk(A∗JG(Afk − g) + αJFfk)

)
Some remarks.

In the Banach space Lp, with 1 < p < +∞, we have

JLp(f ) = |f |p−1 sgn(f ) .

JLp is a non-linear, single-valued, diagonal operator, which cost O(n) oper-
ations, and does not increase the global numerical complexity O(n log n) of
shift-invariant image restoration problems solved by FFT.

Basically, different Lp spaces leads to different kinds of regularization.



A numerical evidence: L2 Hilbert vs. Lp Banach spaces
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Improvement of regularization effects
via operator-dependent penalty terms (I)

In the Tikhonov regularization functional Φα(f ) = 1
p‖Af −g‖

p
G+αR(f ) ,

widely used penalty terms R(f ) include:

(i) ‖f‖p, or ‖f − f0‖p, where f0 is a priori guess for the true solution, whit
Lp-norm, 1 < p < +∞, or the Sobolev spaces W l,p-norm;

(ii) ‖f‖2S = (Sf, f ) in the Hilbertian case, where S : F → F is a fixed linear
positive definite (often is the Laplacian, S = 4).

(iii)
∫
|∇f | for Total Variation regularization;

(iv)
∑
i |(f, φi)| or the L1-norm

∫
|f | for regularization with sparsity con-

strains;

In the blue case (ii) with the S-norm, the Landweber iteration becomes:

fk+1 = fk − τ (A∗(Afk − g) + αSfk)



Improvement of regularization effects
via operator-dependent penalty terms (II)

All of the classical penalty terms do not depend on the operator A of the
functional equation Af = g, but only on f .

On the other hand, it is reasonable that the “regularity” of a solution de-
pends on the properties of the operator A too.

Recalling that, in inverse problems:

Spectrum ofA∗A ←→ Subspace Components

λ(A∗A) small ←→ Noise Space High Frequencies
λ(A∗A) large ←→ Signal Space Low Frequencies

The idea: [T. Huckle and M. Sedlacek, 2012]
The penalty term should measure “how much” the solution f is in the noise
space, which depends on A.



Improvement of regularization effects
via operator-dependent penalty terms (III)

In [HS12], the key proposal is based on the following operator S

S =

(
I − A∗A
‖A‖2

)
,

so that ‖f‖2S = (Sf, f ) ≈
{
large if f is heavily in the noise space of A
small if f is lightly in the noise space of A

The linear (semi-)definite operator S is a high pass-filter (please notice that
S is NOT a regularization filter, which are all low pass...).
This way, the S-norm is able to measure the “non-regularity” w.r.t. the
properties of the actual model-operator A.

In the previous literature, the Tikhonov regularization functional
Φα(f ) = ‖Af − g‖2 + α‖f‖2S is solved, only in Hilbert spaces, by direct
methods via Euler-Lagrange normal equations. This way, the direct solver
benefits of the very high regularization effects given by ‖f‖2S .



Minimization of Tikhonov functional
with high-pass filter S as penalty term

We can apply the idea of the high-pass filter S to any iterative method in
Banach spaces for the minimization of the Tikhonov regularization functional

Φα(f ) = ‖Af − g‖pG + α‖f‖pS .

Drawback: The high-regularization effects of the S-norm slow down the
convergence of the iterations.

The operator S reduces the components in the signal space and keep the
component in the noise space. But we have to do the opposite. So we modify
the (convex) Tikhonov functional into the non-convex (family of) functionals

Φ̃αk(f ) = ‖Af − g‖pG−αk‖f‖
p
S .

This way, the basic Landweber iterations becomes

fk+1 = JF ∗
(
JFfk − τk(A∗JG(Afk − g)−αkSJFfk)

)
,

The action of−S is a “ir-regularization”, which reduces the (over-smoothing)
regularization effects of the iterative method (in the first iterations . . . ).



Minimization of difference of convex functions

Any ir-regularization functional

Φ̃αk(f ) = ‖Af − g‖pG−αk‖f‖
p
S .

is not convex. However, it is composed by the difference of two convex
functional, ‖Af − g‖pG and ‖f‖pS.

These kind of functions, called DC -difference of convex- functions (or delta-
convex functions), have been exhaustively analyzed since about 1950.

The class of DC functions is a remarkable subclass of locally Lipschitz
functions that is of interest both in analysis and optimization.

It is naturally the smallest vector space containing all continuous convex
functions on a given set. And it is surprisingly “large”!

If you know the DC decomposition (as in our case), there exist algorithms
for the global minimum based on primality-duality.



The vector space of DC (difference of convex) functions

Let DC(X) be the vector space of scalar DC functions on the open convex
set X ⊂ Rn (Euclidean case). Let

h = h1 − h2 ∈ DC(X)

where both h1 and h2 are convex functions on X . Clearly h1 and h2 can be
chosen non-negative.

The class of DC functions is a subclass of locally Lipschitz functions.

(i) In the simplest case n = 1, h(x) is a DC function if and only if it has
left and right derivatives and these derivatives are of bounded variation
on every closed bounded interval interior to X (that is, f ′ is a difference
of two nondecreasing functions).

(ii) Thanks to (i), any polynomial on Rn is DC. Indeed, each polynomial p can
be decomposed as p = q− r where r, q are nonnegative convex functions.
Easy proof: x2n+1 = (x+)2n+1 − (x−)2n+1 and x2n are DC

(iii) Thanks to (ii), DC functions are dense uniformly in C(X) for compact
X . Any continuous function can be well approximated by DC functions.



DC decomposition of a (random) polynomial

h = h1 − h2



DC decomp. of the interp. polynomial of Runge function

h = h1 − h2



A sketch on linear algebra:
Eigenvalues and DC functions (I)

Let A be a n×n symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

(i) The quadratic form

R(x) =
1

2
xtAx

is DC on Rn.

Indeed, there are many decomposition with positive semi-definite A+ and
A− such that R(x) = 1

2x
tA+x− 1

2x
tA−x .

(ii) The kth-largest eigenvalue function

λk : A→ λk(A)

is DC on the space of symmetric matrices.

Proof: λk =
∑j=k
j=1 λj −

∑j=k−1
j=1 λj , and the sum of the first largest

eigenvalues is convex, i.e.,∑j=k
j=1 λj(tA1 + (1− t)A2) ≤ t

∑j=k
j=1 λj(A1) + (1− t)

∑j=k
j=1 λj(A2).



Eigenvalues and DC functions (II)

Let A be a n × n symmetric positive definite matrix with eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

There are some further more involving facts. An example:

From the Rayleigh quotient, we know that the largest eigenvalue is

λ1 = max{xtAx : ‖x‖ ≤ 1} .

Via dualization schemes for convex constrains, the optimization theory for
DC function shows that

λ1 = −min{xtA−1x− 2‖x‖ : x ∈ Rn} , as well as

λ1 = −min{‖x‖2 − 2
√
xtAx : x ∈ Rn} .



Eigenvalues and DC functions (III)

We verify the first one (the second one is similar). Recall that A is a n×n
symmetric positive definite matrix with eigenvalues λ1 ≥ . . . ≥ λn > 0.

λ1 = −min{xtA−1x− 2‖x‖ : x ∈ Rn}

Indeed, let u be fixed, with ‖u‖ = 1, and consider x = %u, with % ≥ 0.

For xtA−1x− 2‖x‖ = (utA−1u)%2 − 2% := s(%), the minimum is attained
for s′(%̃) = 2(utA−1u)%̃− 2 = 0, that is, at %̃ = (utA−1u)−1 .

This minimum is:

s(%̃) = (utA−1u)(utA−1u)−2 − 2(utA−1u)−1 = −(utA−1u)−1.

Searching for the minimum of all the minima of s(%̃) (i.e, all over the
directions u), we obtain:

min{xtA−1x− 2‖x‖ : x ∈ Rn} = min‖u‖=1{−(utA−1u)−1} =

= −max‖u‖=1{(utA−1u)−1} = −(λmin(A−1))−1 = −λmax(A) = −λ1 .



The ir-regularization method (in Banach spaces)

We consider the Landweber method in Banach spaces, with ir-regularization
penalty term (i.e., minim. of a DC func.). We write the iteration as follows:

fk+1 = JF ∗
(
JFfk − τA∗JG(Afk − g) + βkSJFfk

)
,

S =

(
I − A∗JGA
‖A‖‖A∗‖

)
,

Theorem 1 (Noiseless case) [Brianzi, Di Benedetto, E., Surace, 2018]

If (βk)k is positive and decreasing, with
+∞∑
k=0

βk < +∞, and τ ∈
(

0,
2

‖A‖2

)
,

then
lim
k→∞

fk = f†,

for the ir-regularization iterative method in Hilbert spaces.



The ir-regularization method for noisy data

Via filter factor analysis, we can prove that acceleration via ir-regularization
still converges and gives rise to a regularization method. Recall that, by
singular-value decomposition (σn; vn, un)+∞

n=1 of compact operators

y = Ax =

∞∑
n=1

σn(x, vn)un and x† = A†y =

∞∑
n=1

(y, un)

σn
vn ,

where σn > 0 ∀s and σn→ 0 for n→ +∞ (σ1 ≥ σ2 ≥ . . . ).

We write the k-th iteration xk as filtered version of x†:

xk =

∞∑
n=1

φk(σn)
(y, un)vn

σn
.

By classical reegularization theory in Hilbert space,
if ∀σ ∈ (0, ‖A‖], limk→+∞ φk(σ) = 1, and same stability conditions
hold (...), the iterative scheme is a regularization algorithm.

Theorem 2 (Noisy case)The ir-regularization method is a regular-
ization algorithm.



The acceleration given by the ir-regularization method (I)

By manipulation of recursions of both the basic and the accelerated meth-
ods, two derive the following formulas:

1− φLand
k+1 (σ) = (1− τσ2)(1− φLand

k (σ)) ,

1− φirr
k+1(σ) = (1− τσ2)(1− φirr

k (σ))+βk

(
1− σ2

σ2
1

)
φirr
k (σ) .

Assume now that, for a certain n, the inequalities 0 < 1− φirr
k (σ) ≤

≤ 1− φLand
k (σ) < 1 hold (this is trivially true for n = 0). We obtain

1− φirr
k+1(σ) ≤ 1− φLand

k+1 (σ)+βk

(
1− σ2

σ2
1

)
φirr
k (σ) .

We see from the formula that the new ir-regularization filter factor can
approach the limit 1 faster than the corresponding of classical Landweber.



The acceleration given by the ir-regularization method (II)

The first values of the filter factors for the classical Landweber and the
accelerated by ir-regularization for a constant ir-regularization parameter
(βk ≡ 0.1; τ = 0.8, σ1 = 1).

k φLand
k (σ) φirr

k (σ)
1 0.6400 0.6400
2 0.8704 0.8934
3 0.9533 0.9938
4 0.9832 1.0335
5 0.9940 1.0493
6 0.9978 1.0555

The values of the ir-regularization method approach the value 1 (which
means ”no filtering”) faster than the Landweber one.

Notice that, in practice, the acceleration parameter βk must be reduced in
order to prevent that φirr

k (σ) has values larger than 1.



Numerical results (I) (Satellite data set)

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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βk = %skα0 (ir-regularization decreasing sequence); F = G = L2 .

Adaptive update of the ir-regularization sequence (βk):
With s0 = 0, if ‖Afk − g‖2 ≥ ‖Afk−1 − g‖2 then sk = sk−1 + 1,

else sk = sk−1.



Numerical results (II): The preconditioned version

Next, we consider the preconditioned version of the method,
where the preconditioner D is a regularization preconditioner in the dual
space, that is, D : G∗ −→ G∗.

The dual-preconditioner D is built by means of (an extension to Banach
spaces of) a filtering procedure of the T.Chan preconditioner in Hilbert space.

fk+1 = JF ∗
(
JFfk − τkDA∗JG(Afk − g) + βkSJFfk

)
,

S =

(
I − A∗JGA
‖A‖‖A∗‖

)
.

The preconditioners allow to speed up the convergence, but usually they
give rise to instability (that is, to a fast semi-convergence).

The classical preconditioned method is faster than the method with ir-
regularization. However, surprisingly enough, the ir-regularization improves
the stability of the preconditioned method.



Numerical results (II): preconditioner VS ir-regularization

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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Numerical results (II): preconditioner AND ir-regularization

Relative Restoration Errors RRE(k) = ‖fk − f‖2/‖f‖2 vs. Iteration Number
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Numerical results (III): A geophysical application (Hilbert)

Aim: To enhance the spatial resolution of simulated Special Sensor Microwave/Imager
(SSM/I) radiometer measurements (in Hilbert spaces).

Unknown: brightness temperature on a 1400× 700 km Earth’s surface
Data: remotely sensed measurements via Fredholm integral operator
Noise: 10% Gaussian, zero mean (Courtesy: monde-geospatial.com)

(a) Reference field - (b) Simulated noisy measurements



Numerical results (III): A geophysical application

TOP: 2-norm of the residual versus the iteration index k.
BOTTOM: Relative error between the k-reconstructed and the reference field versus k. c is
an upper bound related to the 2-norm of the noise.
ART = algebraic reconstruction technique (to compare with). βk = β0/2k.



Numerical results (III): A geophysical application

TOP: Reconstructed field using the conventional Landweber method (β0 = 0 , k = 175).
BOTTOM: Reconstructed field using the improved Landweber method (β0 = 23 , k = 120).
Relative restoration error: 0.53, both.



The new framework: variable exponent Lebesgue spaces

A recent improvement: the ill-posed functional equation Af = g is solved
in the Lp(·) Banach space, namely, the variable exponent Lebesgue spaces (a
special case of the so-called Musielak-Orlicz functional spaces).

In a variable exponent Lebesgue spaces, to measure a function f , instead
of a constant exponent p all over the domain, we have a pointwise variable
(i.e., a distribution) exponent 1 ≤ p(·) ≤ +∞:∫

|f (x)|p(x)dx .

This way, different regularization levels on different regions of the image
to restore can be automatically and adaptively assigned. Different pointwise
regularization is useful because background, low intensity, and high intensity
values require different filtering levels (see Nagy, Pauca, Plemmons, Torg-
ersen, J Opt Soc Am A, 1997, ”Regularization is accomplished by varying
the preconditioners -i.e., the regularization levels- across the segments”).



The norm of the variable exponent Lebesgue space

In the conventional case Lp, the norm is ‖f‖Lp =
( ∫
|f (x)|pdx

)1/p
.

In Lp(·) Lebesgue spaces, the definition and computation of the norm is
not straightforward, since we have not a constant value for computing the
(mandatory) radical. How is the following problem solved?

‖f‖
Lp(·) =

(∫
|f (x)|p(x)dx

)1/???
.

The solution: compute first the so-called modular (for 1 < p(·) < +∞)

%
Lp(·)(f ) =

∫
|f (x)|p(x)dx ,

and then obtain the norm by solving a 1D minimization problem

‖f‖
Lp(·) = inf

{
λ > 0 : %

Lp(·)(f/λ) ≤ 1
}
.

In the case of constant distribution p(·) = p, this norm coincides with the
classical one ‖f‖Lp.



The duality map of the variable exponent Lebesgue space

By extending the duality maps, we can use the previous ir-regularization
iterative method in the framework of variable exponent Lebesgue spaces.

For any constant 1 < r < +∞, we recall that the duality map, that is, the
(sub-)differential of the functional 1

r‖f‖
r
Lp , in the classical Banach space Lp,

with constant 1 < p < +∞, is defined as follows(
JLp(f )

)
(x) =

|f (x)|p−1 sgn(f (x))

‖f‖p−rp

.

By generalizing a result of P. Matei [2012], we have that the corresponding
duality map in variable exponent Lebesgue space is defined as follows(

J
Lp(·)(f )

)
(x) =

1∫
Ω
p(x) |f (x)|p(x)

‖f‖p(x)
p(·)

dx

p(x) |f (x)|p(x)−1 sgn(f (x))

‖f‖p(x)−r
p(·)

,

where any product and any ratio have to be considered as pointwise.



The adaptive algorithm in variable exponent Lebesgue spaces

It is a numerical evidence that, in Lp image deblurring,

• dealing with small 1 ≈ p << 2 improves sparsity and allows a better
restoration of the edges of the images and of the zero-background,

• dealing with p = 2 (or p > 2), allows a better restoration of the pixels
with the highest intensities.

The idea: to use (a re-blurred and scaled into [1, 2] version of) the blurred
data g as distribution of the exponent p(·) for the variable exponent Lebesgue

spaces Lp(·) where computing the solution. Example:

p(·) = 1 + [A∗g(·)−min(A∗g)]/[max(A∗g)−min(A∗g)]

The Landweber (i.e., fixed point) iterative scheme in this Lp(·) Banach
space can be modified as adaptive iteration algorithm, by recomputing, after
each fixed number of iterations, the exponent distribution pk(·) by means of
the k-th restored image fk (instead of the first re-blurred data Ag), that is

pk(·) = 1 + [fk(·)−min(fk)]/[max(fk)−min(fk)]



True image Point Spread Function Blurred image (noise = 4.7%)



True image Blurred (noise = 4.7%) p = 2 (0.2692)

p = 1.3 (0.2681) p = 1.3− 1.6 (0.2473) 1.3− 1.6 and irreg. (0.2307)



Conclusions

•Regularization iterative methods can be accelerated by ir-regularization.

• Theory for global minimization of DC functions via dualization could be
useful to speed-up iterative schemes.

• Extension of regularization algorithms to variable Lebesgue spaces could
provide adaptive regularization too...

Thank you for your attention.
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