fractional-Tikhonov and graph-Laplacian approximation

applied to signal and image restoration
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Our model problem

Y’ = K *

e /i represents the blur and it is severely ill-conditioned (compact
integral operator of the first kind);

e 4 are known measured data (blurred and noisy image);
® ||noise|| < 4.
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Filter based regularization methods

We substitute the KT operator with a one-parameter family of
continuous linear operators { Ro }ac(0,a0):

Ky’ =% 0 (" um)vm

m: opm >0

4

Ray’ = Y Fulowm)on (4’ um)vm

m: om>0

o = a(6,y°) is called rule choice.
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Fractional Tikhonov filter functions

2
o .
™ with a > 0.
o

e Standard Tikhonov filter: Fi,(0y,) = —

Oim,

r+1
* Weighted/Fractional Tikhonov filter: F,, .(0y,) = Uﬁ’%, with

m

a >0 and r € [0,+00) (Hochstenbach and Reichel, 2011).

For 0 < r < 1, fractional weighted filter smooths the reconstructed
solution less than standard Tikhonov while for » > 1 it oversmooths.
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An easy 1d example of oversmoothing - part 1

Blur taken from Heat(n, k) in Regtools, n = 100,x =1 and 2%
noise. True solution:

x 0,1 >R st xI(t)=

0 if0<t<0.5,
1 if05<t<l.

= true solution
s —Tik

—F- Tik, r=0.35
o8- —blur+2% noise

w+ F-Tik, =3
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Let's reformulate the problem

e Tikhonov: argmin ||[Kx — y||3 + o|/x||3
xeR?
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Let's reformulate the problem

e Tikhonov: argmin ||[Kx — y||3 + o|/x||3
xeR?

e F. Tikhonov: argmin ||[Kx — y||%, + a||x||3, with W = (KK*)TEI.
x€R”™

e Generalized Tikhonov: argmin | Kx — y||% + «|/Lx]|3, with L
x€eR?

semi-positive definite and ker(L) Nker(K) = 0. ker(L) should
‘approximate the features 'of x!.
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Let's reformulate the problem
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‘approximate the features 'of x!.
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xER"
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Laplacian - Finite Difference approximation

Poisson (Sturm-Liouville) problem on [0, 1]:
—Ax(t) = £(t) te(0,1),
a1x(0) + B1x'(0) = 71,
azx(1) + fox'(1) = 7.

If we consider Dirichlet homogeneous boundary conditions
(x(0) =x(1) = 0) and 3-point stencil FD approximation:

—x(t —h) +2x(t) —x(t+ h)

—Ax(t) = 2 , h2=n"?%
2 -1 0
-1 2 =1 ... .
—L = _ . . ker(L) = 0.
0 -1 2



Laplacian - Finite Difference approximation

If we consider Neumann homogeneous boundary conditions
(x'(0) = x/(1) = 0) and 3-point stencil FD approximation:

—x(t —h) +2x(t) — x(t+ h)
n2

—Ax(t) = , W2 =n"2



An easy 1d example of oversmoothing - part 2

Blur taken from Heat(n, k) in Regtools, n = 100,x =1 and 2%
noise. True solution:

0 if0<t<0.5
x':[0,]] = R st xI(t) = I - -
1 ifob<t<1.

1| = True solution -
o8| | —Tik + L dirichlet !

o8~ | ==Tik + L neumann
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Graph Laplacian

e An image/signal x can be represented by a weighted undirected
graph G = (V, E,w):
o the nodes v; € V are the pixels of the image/signal and x; > 0 is the
color intensity of x at v;.
© anedgee;; € ECV xV exists if the pixels v; and v; are connected,
i.e., Ui ~ Uy
o w:FE — Ris a similarity (positive) weight function, w(e; ;) = w; ;.

e The graph Laplacian is defined as

w; ;>0 if v; ~ oy,
—Agl)xi = Z Wi j (Xi —Xj), { i J ’

s w;; =0 otherwise.
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Graph Laplacian - Example

Example. In the 1d case, if we define

o o L if v ~ vy,
vi~vjiffi=j+1ori=j—1, Wy j = 0 otherwise

then it holds
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Question

Why should the red points be connected?
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Answer

They should not, indeed

12 T

T |= true
osi- |—Tik + graph

o ———
o [28 o
W= e
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Fractional Tikhonov + Graph Laplacian

Rl True
—F. Tik. + graph, r=4

08— —
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Problems

e Detection of the discontinuity points.
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Problems

e Detection of the discontinuity points.
e SVD decomposition for the fractional-Tikhonov.
e Choice of the weights w; ;.
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Problems

e Detection of the discontinuity points.

o pre-denoising + first derivatives?
e SVD decomposition for the fractional-Tikhonov.

o we need to bypass it finding a new smoothing parameter.
e Choice of the weights w; ;.

o finding the best weights that can approximate the Euclidean Laplacian.
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Approximating the continuous Laplacian by graphs

n

) — R jAj(ng))zg_QCOS<M>

35 T
= continuous Laplacian
aH y :
—discrete Laplacian
25
2
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FD approximation - 1/3

We have already highlighted that
Finite Difference 3-point stencil <= graph-Laplacian

Can we argue the same relationship if we use a wider stencil, i.e., if
we " connect” more points?
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FD approximation - 2/3

Let us use a 5-point stencil.

x(t — 2h) — 16x(t — h) 4+ 30x(t) — 16x(t + h) + x(t — 2h)

—Ax(t) = 27,2 ,
then
5161 '
_1%6 3]12 _1]?6 1 0
12 12 12 12
—Lg”) - _L,EZ}) - . :

116 30 16 1

12 12 12 12 12
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FD approximation 3/3

We have seen that negative weights appear. Does it make sense?
e Does it approximate better the continuous Laplacian? Yes.
e [s it still a graph-Laplacian? Yes.

® Does it improve the reconstruction of our signal /image? Yes.
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Spectral approximation

T
= continuous Laplacian
aH i

—FD 3-points
25 —FD 21-points =]

2| <
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graph-Laplacian - distributional point of view

—X"(to) = <X//(t)75to ()
+00 sin((t — to)me 1)

= —1li "t
) N b oy

+oo sin((t — to)me 1) 1"

~ — (a_ix(to — kh) + - - + apx(to) + - - - + apx(to — kh)),

du(t)

= — lim

e—0 ) _

where
"

sin((t — to)we_l)]
m(t —to) [t=to+jh '

[ p- a1 ap -y is our stencil for the Toeplitz.

ajzu(fj)'[

22 of 33
___



Signed measures - 1/2

sin((t — to)me1)]”
J J T(?L *f ) t=to+jh
(1) >0 always
f {ll "
{sm(( to)me )} changes sign.
n (f — & ) [t=to+jh

Is it so dramatic that the sequence «; change signes?

The Lebesgue measure du(-) on [0, 1] can be weakly approximated by

_ysin(tmn)

dp(-).-

signed measures: du(-) = lim n
n—o0
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Signed measures - 2/2

Fact: the spectrum of the graph-Laplacian that arises from FD
schemes with increasing connected points, converges to the spectrum
of the continuous Laplacian operator.

-3 i FD-21 FD-181

0
9 9 -1/4
05 - 9
2
1568 1569 157 1571 1572 1573 1574 155 156 157 158 159 1 B

The stencil converges to the Fourier coefficients of f(#) = 6*:
2
N T S
4 2 3 2 4
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Example - heat(n, 1) 5% noise

graph-Laplacian with 10 points connected.
No regularization parameters setting

L) = diag LG/, LG/, LG/, 1)
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Example - deriv2(n, 3), 2% noise

— True
T —Tik.
o0et|—F. Tik. + graph

0o 0 - 0
-1 2 -1 0
(n/2)
() _ L 0 (n/2) _ .
Lw - [ 0 L(n/2) Lw - .
v -1 2 -1
(0 0 0
ker(L{/?) = Span{T, #}
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Example - heat(n, 1) 2% noise

= True
| |—Tik.
| |—F. Tik. + graph
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2D example - denosing 1/2

real image

alpha=1, p=1 alpha=1, p=10
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2D example - denoising 2/2

real image 50% of Gaussian white noise
5 - =

alpha=1, p=10
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2D example - Gaussian blur

real image Gaussan blur (band=3, delta=1.1) 20% of g.w.n.

alpha=1, p=10
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Edge detection - 1/2

real image w.g.n. 40% pre-dencising g-Laplacian

mll

e. detection e. detection after pre-denocising
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Edge detection - 2/2

real image .g.n. pre-dencising g-Laplacian

e. detection e. detection after pre-denocising
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