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Introduction

Linear autonomous systems

Linear autonomous system

A linear autonomous system can be given by

{ x(k+1) = A x(k)
x(0) = xo

for AcR™" and k=0,1,....

The solution of a linear autonomous system is

x(k) = Akxg
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Introduction

Sharp partial ordering

Group inverse

Given a matrix A € R™"  with index less than or equal to 1. The group
inverse of A is the matrix A% satisfying

AATA=A, APAA" = A7 and AA* = ATA

Sharp partial ordering

Given A, B € R™" with ind(A) <1, ind(B) <1,

AA# = BA#
A*A = A*B

#
A§B<:>{

where A% is the group inverse of A.
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Properties

Given A, B € R™" with ind(A) <1 and ind(B) <1, and P € R™"
nonsingular,

# L # .
A<B — PAP *<PBP

#
Given A, B € R™" such that A < B, then

Spectrum(A) C Spectrum(B) U{0}.

A\
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Characterizations of the sharp partial ordering

First characterization

Given A, B € R™", with ind(A) <1 and ind(B) <1, the following
statementes are equivalent:
#
e A<B
o A>=BA=AB

@ There exist nonsingular matrices P, C; and G, such that

Cl Cl
A=P 0 Pl ud B=P @ p1
0 o)

Core-nilpotent decomposition
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Introduction

Characterizations of the sharp partial ordering

Second characterization

Given A, B € R™" with ind (A) <1 and ind (B) <1, the following
statementes are equivalent:

#
e A<B

@ There exist an idempotent matrix @ such that

A=QB=BQ
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Characterizations of the sharp partial ordering

Third characterization

Given A, B € R™", with ind(A) <1 and ind(B) <1, the following
statementes are equivalent:

#
e A<B

@ There exist an idempotent matrix T such that

_yl| XK XL |7 [ TEk TEIL]
B—U{O O}U and A—U[ 0 0 }U
where
e U is an orthogonal matrix, Hartwig
e Y is a diagonal definite positive matrix, Spindelbock
o K and L matrices such that KK +LLT =/, ) decomposition
o TXK=XKT.
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First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Sharp partial ordered autonomous systems

Consider the autonomous systems

(1){ ﬁgg)lllf“(k) - (2){ i(k+_1):3 %(k)

for k=0,1,... and A, B € R"™" having index 1.

#
The systems are ordered under the sharp partial order if A < B.

@ The system (1) is a predecessor of system (2) under the sharp
partial order

@ The system (2) is a successor of system (1) under the sharp partial
order
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

#
First characterization: A< B

G 0
A=P 0 P and B=A+P G p-!
0 0

| |

Theorem

Let A, B € R™" be the state matrices of two sharp partial ordered
autonomous systems.
The solutions of both systems are related by

%(k) = x(k)+ Tk xo

provided that X(0) = x(0) = xo.
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Difference between both solutions

Let A, B € R"*" be the state matrices of two sharp partial ordered
autonomous systems. Then,

1x(k) = x(K) | < | 21 l1xoll
where || - || is compatible with the P—matrix norm.

@ System (2) can be seen as a perturbation of System (1): B=A+T.

@ If the perturbation G, is “small” then x(k) is close to x(k).

@ Since 0(B) = o(A)Uo((y), the stability of system (2) depends on
stability of system (1) and on the perturbation.
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Algorithm

Inputs: The matrix A of index at most 1, the initial condition xp, and the
nonzero perturbation numbers &1,...,&.
Outputs: The matrix B and the solutions x(k) and x(k).

@ Compute the core-nilpotent decomposition of A:

G
A=P (0] p-1
(0]
Q Select G, = digg(ey,...,€&).
0]
© Construct =P G Pland B=A~+T.

)
© The solutions are: x(k) = Akxy and %(k) = x(k) +T*xo.
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Example: x(k+1) = A x(k) and X(k+1) = B x(k) )

Let
01739 00607 00662 00763  0.0596 —0.0400
04338 00725 01048 02847 01164 —0.0720
A— | 08839 0384 03080 02966 0333 02302
- —0.0239 0.1583 —0.0471 0.1691 —0.0697 0.0584 -
0.1986 —0.1166 —0.0579 0.0304 0.0875 —0.0624
—0.5959 0.2936 0.1947 —0.1587 —0.2395 0.1674

0.5000  —0.3333 ‘
0 0.3333 —
=P K pt

(@)

and

05000 —0.3333
0 0.3333 1
B=P 0.5000 0 P~

0  0.5000
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Then
1%(k) = x(K)|| < | G2l Ellxoll = 0.7071|xo -

Figure: Evolution of the 15th first iterations of x;(k) and X;(k)
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

#
Second characterization: A< B
A= QB

where Q is an idempotent matrix.

Theorem

Let A, B € R"*" be the state matrices of two sharp partial ordered
autonomous systems.
The solutions of both systems are related by

x(k) = Qx(k)

provided that X(0) = x(0) = xo.
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

@ Solution of System (1) is a projection of the solution of System (2):
x(k) = Qx(k).
@ All the idempotent matrices Q7 satisfying A= Q7B = BQz are

I
Qz=P 0 pt
z

In particular Z = 0 = Q7 = AA* = A*#A.

@ Both solutions are as close as the magnitude of the matrix @ — /:

[Ix(k) =x(R)II < [[Q = Il £l ol

where || - || is the Frobenious norm.
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

#
Third characterization: A< B

YK XL

+
— T _
B—U{ 0 O}U and A—U{O

|

Theorem

Let A,B € R"" be the state matrices of two sharp partial ordered
autonomous systems.
The solutions of both systems are related by

x(k) = Tx(k)

provided that X(0) = x(0) = xo.
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Definition
. First characterization
Sharp partial ordered autonomous systems R
y Second characterization

Third characterization

Solution of two ordered autonomous systems

Difference between both solutions

Let A, B € R™" be the state matrices of two sharp partial ordered
autonomous systems. Then,

Ix(k) =2 (Kl < I T = HlEI=]Ellxo]

@ Solution of System (1) is a projection of the solution of System (2):
x(k) =Tx(k).

@ Both solutions are as close as the magnitude of the singular value
matrix X.

@ Since o(TXK) C 6(XK), the stability of System (2) implies the
stability of System (1).
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Algorithm

Inputs: The matrix B of index at most 1 and the initial condition xg.
Outputs: The matrix A and the solutions X(k) and x(k).

@ Compute the SVD of B: B= USV T and r = rank(B).

@ Assign to X the first r rows and the first r columns of S.

© Compute M =SV TU.

@ Assign to M the first r rows and the first r columns of M.
@ Compute R= Y IM.

@ Assign to K the first r rows and the first r columns of R.

@ Assign to L the first r rows and the last n— r columns of R.
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First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Algorithm

Until here we have constructed the Hartwig-Spindelbéck decom-
position of B:

B:U[ZK ZL]UT

0O O

© Find a matrix T such that KT = TYXK and T?=T.
© Construct

0 0 and r=u

A_U{TZK TZL]UT ~ {

@ The solutions are: (k) = B¥xo and x(k) = x(k).
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Example: x(k+1) = B x(k) and x(k+1) = A x(k) J

Let
0.3748 —0.0548 —0.1024 0.0447 0.2241 0.1326

-0.2717 0.4732  —-0.2945 —-0.1694 0.0093 0.2499

B = —0.3656 0.1359 0.3203  —-0.1150 —0.1290 0.2435
- 0.2810  —0.1305 0.0172 0.4182 —-0.0674 —0.1675
—0.2640 0.2224  —-0.1157  —0.2485 0.0016 0.1178

0.3813  —-0.1425 0.2049 0.1514 0.1744 0.2454

Then
1.0819 0 0 0
_ 0 0.5784 0 0
z - 0 0 0.5256 0
0 0 0 0.3085
Choose

—0.1860  —0.1428 0.0821 0.2657
T 0.6177 0.5894 —-0.3608 —0.0162
-1.0127  -0.9133 0.5509 0.4261
—0.1855  —0.0384 0.0021 1.0455
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Definition

First characterization
Second characterization
Third characterization

Sharp partial ordered autonomous systems

Solution of two ordered autonomous systems

Then
Ix(k) = %C) < I T = HIENZIE>o]l-

Figure: Evolution of the 15th first iterations of x;(k) and X;(k)
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Conclusions

@ We have introduced the concept of sharp partial ordered
autonomous systems.

@ The successor system can be seen as a perturbation of its
predecessor. The difference between their solutions is given by the
magnitude of the perturbation matrix G,.

@ The solution of the predecessor system can be obtained as a
projection of the solution of its successor system and, in this case,
the difference between the solutions is given by the magnitude of
the singular value matrix X.
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Future work

@ Define ordered autonomous systems for other matrix partial orders
like minus, cn, star ...

@ Extend the concept of sharp partial ordered autonomous systems to
linear control systems.

@ Study linear control systems for different orders.
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Conclusions and Future work

Solution of TYK =YKT and T2=T

Proposition

Let ¥ and K be the matrices of the Hartwig-Spindelbock decomposition
of B.
There exists a nontrivial idempotent matrix T such that X KT = TXK

T
There exists a nonsingular matrix S such that YK =S [ %1 SO } st
2

@ The matrix T can always be constructed since the block partition of
> K can always be done using its Jordan canonical form.

@ If XK is diagonalizable, we can construct several matrices T with
different rank by choosing adequate blocks in XK.

@ Alternatively we can select T using the Schur decomposition of XK.
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