Linear autonomous systems partially ordered by the sharp partial order

Alicia Herrero Néstor Thome

Instituto Universitario de Matemática Multidisciplinar, Universitat Politècnica de València
 Ministerio de Economía, Industria y Competitividad of Spain
 (Grants DGI MTM2013-43678-P and Red de Excelencia MTM2017-90682-REDT)

NASCA 2018

Outline of the talk

(1) Introduction
(2) Sharp partial ordered autonomous systems
(3) Conclusions and Future work

Linear autonomous systems

Linear autonomous system

A linear autonomous system can be given by

$$
\left\{\begin{array}{l}
x(k+1)=A x(k) \\
x(0)=x_{0}
\end{array}\right.
$$

for $A \in \mathbb{R}^{n \times n}$ and $k=0,1, \ldots$

Solution

The solution of a linear autonomous system is

$$
x(k)=A^{k} x_{0}
$$

Sharp partial ordering

Group inverse

Given a matrix $A \in \mathbb{R}^{n \times n}$, with index less than or equal to 1 . The group inverse of A is the matrix $A^{\#}$ satisfying

$$
A A^{\#} A=A, \quad A^{\#} A A^{\#}=A^{\#} \quad \text { and } \quad A A^{\#}=A^{\#} A
$$

Sharp partial ordering

Given $A, B \in \mathbb{R}^{n \times n}$, with ind $(A) \leq 1$, ind $(B) \leq 1$,

$$
A \stackrel{\#}{\leq} B \Longleftrightarrow\left\{\begin{array}{l}
A A^{\#}=B A^{\#} \\
A^{\#} A=A^{\#} B
\end{array}\right.
$$

where $A^{\#}$ is the group inverse of A.

Properties

Invariance under similarities

Given $A, B \in \mathbb{R}^{n \times n}$, with $\operatorname{ind}(A) \leq 1$ and $\operatorname{ind}(B) \leq 1$, and $P \in \mathbb{R}^{n \times n}$ nonsingular,

$$
A \stackrel{\#}{\leq} B \quad \Longrightarrow \quad P A P^{-1} \stackrel{\#}{\leq} P B P^{-1}
$$

Spectrum

Given $A, B \in \mathbb{R}^{n \times n}$ such that $A \stackrel{\#}{\leq} B$, then

$$
\operatorname{Spectrum}(A) \subseteq \operatorname{Spectrum}(B) \cup\{0\} .
$$

Characterizations of the sharp partial ordering

First characterization

Given $A, B \in \mathbb{R}^{n \times n}$, with $\operatorname{ind}(A) \leq 1$ and $\operatorname{ind}(B) \leq 1$, the following statementes are equivalent:

- $A \stackrel{\#}{\leq} B$
- $A^{2}=B A=A B$
- There exist nonsingular matrices P, C_{1} and C_{2} such that

Core-nilpotent decomposition

Characterizations of the sharp partial ordering

Second characterization

Given $A, B \in \mathbb{R}^{n \times n}$, with ind $(A) \leq 1$ and $\operatorname{ind}(B) \leq 1$, the following statementes are equivalent:

- $A \stackrel{\#}{\leq} B$
- There exist an idempotent matrix Q such that

$$
A=Q B=B Q
$$

Characterizations of the sharp partial ordering

Third characterization

Given $A, B \in \mathbb{R}^{n \times n}$, with ind $(A) \leq 1$ and $\operatorname{ind}(B) \leq 1$, the following statementes are equivalent:

- $A \stackrel{\#}{\leq} B$
- There exist an idempotent matrix T such that

$$
B=U\left[\begin{array}{cc}
\Sigma K & \Sigma L \\
O & O
\end{array}\right] U^{T} \quad \text { and } \quad A=U\left[\begin{array}{cc}
T \Sigma K & T \Sigma L \\
O & O
\end{array}\right] U^{T}
$$

where

- U is an orthogonal matrix,
- Σ is a diagonal definite positive matrix,

Hartwig

- K and L matrices such that $K K^{T}+L L^{T}=I$, decomposition
- $T \Sigma K=\Sigma K T$.

Sharp partial ordered autonomous systems

Definition

Consider the autonomous systems

$$
\text { (1) }\left\{\begin{array} { l }
{ x (k + 1) = A x (k) } \\
{ x (0) = x _ { 0 } }
\end{array} \quad \text { and } \quad (2) \left\{\begin{array}{l}
\bar{x}(k+1)=B \bar{x}(k) \\
\bar{x}(0)=\bar{x}_{0}
\end{array}\right.\right.
$$

for $k=0,1, \ldots$ and $A, B \in \mathbb{R}^{n \times n}$ having index 1 .
The systems are ordered under the sharp partial order if $A \stackrel{\#}{\leq} B$.

- The system (1) is a predecessor of system (2) under the sharp partial order
- The system (2) is a successor of system (1) under the sharp partial order

Solution of two ordered autonomous systems

First characterization: $A \stackrel{\#}{\leq} B$

$$
A=P\left[\begin{array}{lll}
C_{1} & & \\
& O & \\
& & O
\end{array}\right] P^{-1} \quad \text { and } \quad B=A+\underbrace{P}_{\Gamma} \begin{array}{lll}
{\left[\begin{array}{lll}
O & & \\
& C_{2} & \\
& & O
\end{array}\right] P^{-1}}
\end{array}
$$

Theorem

Let $A, B \in \mathbb{R}^{n \times n}$ be the state matrices of two sharp partial ordered autonomous systems.
The solutions of both systems are related by

$$
\bar{x}(k)=x(k)+\Gamma^{k} x_{0}
$$

provided that $\bar{x}(0)=x(0)=x_{0}$.

Solution of two ordered autonomous systems

Difference between both solutions

Let $A, B \in \mathbb{R}^{n \times n}$ be the state matrices of two sharp partial ordered autonomous systems. Then,

$$
\|\bar{x}(k)-x(k)\| \leq\left\|C_{2}\right\|_{F}^{k}\left\|x_{0}\right\|
$$

where $\|\cdot\|$ is compatible with the P-matrix norm.

Remarks

- System (2) can be seen as a perturbation of System (1): $B=A+\Gamma$.
- If the perturbation C_{2} is "small" then $\bar{x}(k)$ is close to $x(k)$.
- Since $\sigma(B)=\sigma(A) \cup \sigma\left(C_{2}\right)$, the stability of system (2) depends on stability of system (1) and on the perturbation.

Solution of two ordered autonomous systems

Algorithm

Inputs: The matrix A of index at most 1 , the initial condition x_{0}, and the nonzero perturbation numbers $\varepsilon_{1}, \ldots, \varepsilon_{\ell}$.
Outputs: The matrix B and the solutions $x(k)$ and $\bar{x}(k)$.
(1) Compute the core-nilpotent decomposition of A :

$$
A=P\left[\begin{array}{lll}
C_{1} & & \\
& 0 & \\
& & 0
\end{array}\right] P^{-1}
$$

(2) Select $C_{2}=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{\ell}\right)$.
(3) Construct $\Gamma=P\left[\begin{array}{lll}O & & \\ & C_{2} & \\ & & O\end{array}\right] P^{-1}$ and $B=A+\Gamma$.
(9) The solutions are: $x(k)=A^{k} x_{0}$ and $\bar{x}(k)=x(k)+\Gamma^{k} x_{0}$.

Solution of two ordered autonomous systems

Example: $x(k+1)=A x(k)$ and $\bar{x}(k+1)=B \bar{x}(k)$
Let

$$
\begin{aligned}
A & =\left[\begin{array}{rrrrrr}
0.1739 & -0.0607 & -0.0662 & 0.0763 & 0.0596 & -0.0400 \\
0.4338 & -0.0725 & -0.1948 & 0.2847 & 0.1164 & -0.0720 \\
-0.8839 & 0.3844 & 0.3080 & -0.2966 & -0.3343 & 0.2302 \\
-0.0239 & 0.1583 & -0.0471 & 0.1691 & -0.0697 & 0.0584 \\
0.1986 & -0.1166 & -0.0579 & 0.0304 & 0.0875 & -0.0624 \\
-0.5959 & 0.2936 & 0.1947 & -0.1587 & -0.2395 & 0.1674
\end{array}\right]= \\
& =P\left[\begin{array}{rrr}
0.5000 & -0.3333 \\
0 & 0.3333 & \\
\hline & O & \\
\hline
\end{array}\right] P^{-1}
\end{aligned}
$$

and

Solution of two ordered autonomous systems

Then

$$
\|\bar{x}(k)-x(k)\| \leq\left\|C_{2}\right\|_{F}^{k}\left\|x_{0}\right\|=0.7071\left\|x_{0}\right\| .
$$

Figure: Evolution of the 15th first iterations of $x_{i}(k)$ and $\bar{x}_{i}(k)$

Solution of two ordered autonomous systems

Second characterization: $A \stackrel{\#}{\leq} B$

$$
A=Q B
$$

where Q is an idempotent matrix.

Theorem

Let $A, B \in \mathbb{R}^{n \times n}$ be the state matrices of two sharp partial ordered autonomous systems.
The solutions of both systems are related by

$$
x(k)=Q \bar{x}(k)
$$

provided that $\bar{x}(0)=x(0)=x_{0}$.

Solution of two ordered autonomous systems

Remarks

- Solution of System (1) is a projection of the solution of System (2): $x(k)=Q \bar{x}(k)$.
- All the idempotent matrices Q_{z} satisfying $A=Q_{Z} B=B Q_{z}$ are

$$
Q_{Z}=P\left[\begin{array}{lll}
I & & \\
& O & \\
& & Z
\end{array}\right] P^{-1}
$$

In particular $Z=O \Rightarrow Q_{Z}=A A^{\#}=A^{\#} A$.

- Both solutions are as close as the magnitude of the matrix $Q-I$:

$$
\|x(k)-\bar{x}(k)\| \leq\|Q-I\|_{F}\left\|x_{0}\right\|
$$

where $\|\cdot\|_{F}$ is the Frobenious norm.

Solution of two ordered autonomous systems

Third characterization: $A \stackrel{\#}{\leq} B$

$$
B=U\left[\begin{array}{cc}
\Sigma K & \Sigma L \\
O & O
\end{array}\right] U^{T} \text { and } A=\underbrace{U\left[\begin{array}{cc}
T & 0 \\
0 & I
\end{array}\right] U^{T}}_{\tilde{\Gamma}} B
$$

Theorem

Let $A, B \in \mathbb{R}^{n \times n}$ be the state matrices of two sharp partial ordered autonomous systems.
The solutions of both systems are related by

$$
x(k)=\tilde{\Gamma} \bar{x}(k)
$$

provided that $\bar{x}(0)=x(0)=x_{0}$.

Solution of two ordered autonomous systems

Difference between both solutions

Let $A, B \in \mathbb{R}^{n \times n}$ be the state matrices of two sharp partial ordered autonomous systems. Then,

$$
\|x(k)-\bar{x}(k)\| \leq\|T-I\|_{F}\|\Sigma\|_{F}^{k}\left\|x_{0}\right\|
$$

Remarks

- Solution of System (1) is a projection of the solution of System (2): $x(k)=\widetilde{\Gamma} \bar{x}(k)$.
- Both solutions are as close as the magnitude of the singular value matrix Σ.
- Since $\sigma(T \Sigma K) \subseteq \sigma(\Sigma K)$, the stability of System (2) implies the stability of System (1).

Solution of two ordered autonomous systems

Algorithm

Inputs: The matrix B of index at most 1 and the initial condition x_{0}. Outputs: The matrix A and the solutions $\bar{x}(k)$ and $x(k)$.
(1) Compute the SVD of $B: B=U S V^{\top}$ and $r=\operatorname{rank}(B)$.
(2) Assign to Σ the first r rows and the first r columns of S.
(3) Compute $M=S V^{T} U$.
(9) Assign to \widetilde{M} the first r rows and the first r columns of M.
(6) Compute $R=\Sigma^{-1} \tilde{M}$.
(0) Assign to K the first r rows and the first r columns of R.
((Assign to L the first r rows and the last $n-r$ columns of R.

Solution of two ordered autonomous systems

Algorithm

Until here we have constructed the Hartwig-Spindelböck decomposition of B :

$$
B=U\left[\begin{array}{cc}
\Sigma K & \Sigma L \\
O & O
\end{array}\right] U^{T}
$$

(8) Find a matrix T such that $\Sigma K T=T \Sigma K$ and $T^{2}=T$.
(9) Construct

$$
A=U\left[\begin{array}{cc}
T \Sigma K & T \Sigma L \\
O & O
\end{array}\right] U^{T} \quad \text { and } \quad \tilde{\Gamma}=U\left[\begin{array}{cc}
T & O \\
O & I
\end{array}\right] U^{T} .
$$

(10) The solutions are: $\bar{x}(k)=B^{k} x_{0}$ and $x(k)=\tilde{\Gamma} \bar{x}(k)$.

Solution of two ordered autonomous systems

Example: $\bar{x}(k+1)=B \bar{x}(k)$ and $x(k+1)=A x(k)$
Let

$$
B=\left[\begin{array}{rrrrrr}
0.3748 & -0.0548 & -0.1024 & 0.0447 & 0.2241 & 0.1326 \\
-0.2717 & 0.4732 & -0.2945 & -0.1694 & 0.0093 & 0.2499 \\
-0.3656 & 0.1359 & 0.3203 & -0.1150 & -0.1290 & 0.2435 \\
0.2810 & -0.1305 & 0.0172 & 0.4182 & -0.0674 & -0.1675 \\
-0.2640 & 0.2224 & -0.1157 & -0.2455 & 0.0016 & 0.1178 \\
0.3813 & -0.1425 & 0.2049 & 0.1514 & 0.1744 & 0.2454
\end{array}\right]
$$

Then

$$
\Sigma=\left[\begin{array}{rrrr}
1.0819 & 0 & 0 & 0 \\
0 & 0.5784 & 0 & 0 \\
0 & 0 & 0.5256 & 0 \\
0 & 0 & 0 & 0.3085
\end{array}\right]
$$

Choose

$$
T=\left[\begin{array}{rrrr}
-0.1860 & -0.1428 & 0.0821 & 0.2657 \\
0.6177 & 0.5894 & -0.3608 & -0.0162 \\
-1.0127 & -0.9133 & 0.5509 & 0.4661 \\
-0.1855 & -0.0384 & 0.0021 & 1.0455
\end{array}\right] .
$$

Solution of two ordered autonomous systems

Then

$$
\|x(k)-\bar{x}(k)\| \leq\|T-l\|_{F}^{k}\|\Sigma\|_{F}^{k}\left\|x_{0}\right\| .
$$

Figure: Evolution of the 15th first iterations of $x_{i}(k)$ and $\bar{x}_{i}(k)$

Conclusions

- We have introduced the concept of sharp partial ordered autonomous systems.
- The successor system can be seen as a perturbation of its predecessor. The difference between their solutions is given by the magnitude of the perturbation matrix C_{2}.
- The solution of the predecessor system can be obtained as a projection of the solution of its successor system and, in this case, the difference between the solutions is given by the magnitude of the singular value matrix Σ.

Future work

- Define ordered autonomous systems for other matrix partial orders like minus, cn, star ...
- Extend the concept of sharp partial ordered autonomous systems to linear control systems.
- Study linear control systems for different orders.

THANK YOU VERY MUCH FOR

YOUR ATTENTION

Solution of $T \Sigma K=\Sigma K T$ and $T^{2}=T$

Proposition

Let Σ and K be the matrices of the Hartwig-Spindelböck decomposition of B.
There exists a nontrivial idempotent matrix T such that $\Sigma K T=T \Sigma K$

$$
\Uparrow
$$

There exists a nonsingular matrix S such that $\Sigma K=S\left[\begin{array}{cc}S_{1} & O \\ 0 & S_{2}\end{array}\right] S^{-1}$

Remarks

- The matrix T can always be constructed since the block partition of ΣK can always be done using its Jordan canonical form.
- If ΣK is diagonalizable, we can construct several matrices T with different rank by choosing adequate blocks in ΣK.
- Alternatively we can select T using the Schur decomposition of ΣK.

