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National and Kapodistrian University of Athens

Welcome note from the Rector

Dear participants of NASCA 18 Conference,

It is a great pleasure to extend a warm welcome to you all attending the International
Conference on Numerical Analysis and Scientific Computation with Applications (NASCA
18), organized by the Department of Mathematics of the National and Kapodistrian
University of Athens in collaboration with the University of the Littoral - Opal Coast
(ULCO), France.

The National and Kapodistrian University of Athens (NKUA), which recently cele-
brated 180 years since its foundation, is the oldest University in Greece and the first
Higher Education Institution in the Balkan and Eastern Mediterranean area.

As Rector of this historical University, I fully support these initiatives which bridge
the worlds of education and pursuit research. I strongly believe that participation in a
Conference broadens our minds and gives us the opportunity to share and interchange
our knowledge and research with colleagues from other countries, following the maxim
“The best way to keep our power is to share it”.

Just as the decimals of the number π are infinite, so too are the experiences you can have
in life. Your participation in NASCA18 will strengthen your international collaborations,
will contribute in the progress of your scientific research and will offer you the unique
experience of being in Greece in July and feel our wonderful summer atmosphere.

Concluding, I would like to congratulate the organizing committee of the conference
and cordially wish you all, a fruitful conference.

The Rector

Meletios-Athanasios Dimopoulos

Professor of Medicine
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Numerical Analysis and Scientific Computation with Applications

(NASCA18)

NASCA18 is the third International Conference on Numerical Analysis and Scientific Computation
with Applications, which is organized by the National and Kapodistrian University of Athens (NKUA)
and the University of the Littoral - Opal Coast (ULCO), in Kalamata, Greece, July 2-6, 2018. The
present book of abstracts includes 10 invited lectures, 2 sponsored presentations, 79 contributed talks
and 6 posters, presented by more than 100 participants originating from 27 countries which are depicted
below.

The main scope of the conference is to bring together diverse research and practitioners from academic,
research laboratories, and industries to present and discuss their recent works on numerical analysis and
scientific computation with industrial applications. Topics include

• Large Linear Systems and Eigenvalue Problems with Preconditioning,

• Linear Algebra and Control, Model Reduction,

• Ill-posed Problems, Regularizations,

• Numerical Methods for PDEs,

• Approximation Theory, Radial Basis Functions, Meshless Approximation,

• Optimization,

• Applications to Image and Signal Processing, Environment, Energy Minimization, Internet Search
Engines.

Refereed papers will be published in a special issue of Journal of Computational and Applied Math-
ematics.
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Generalized Matrix Functions:
Theory and Computation

Michele Benzi1

1Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA

Abstract
Generalized matrix functions were introduced in 1973 by Hawkins and Ben-Israel [4] with the aim
of extending the notion of matrix function to rectangular matrices. IfA has rank r andA = UrΣrV

∗
r

is a compact SVD ofA, then f�(A) := Urf(Σr)V
∗
r defines a generalized matrix function ofA, pro-

vided that the real-valued scalar function f is defined on the singular values of A. Generalized ma-
trix functions arise naturally in several applications, ranging from the solution of rank-constrained
matrix minimization problems to the analysis of directed networks. When A is large, computing
its SVD becomes prohibitively expensive. Hence, approximation methods are required for comput-
ing quantities related to generalized matrix functions, such as f�(A)v for a given vector v. This
talk will discuss theoretical aspects of generalized matrix functions, such as the preservation of
structural properties present in A [3], as well as approximation methods based on Golub–Kahan
bidiagonalization [1] and on Chebyshev polynomial interpolation [2].

Collaborators on this project include Francesca Arrigo, Caterina Fenu, Ru Huang, Jared Aurentz,
Anthony Austin, and Vassilis Kalantzis.
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Analysis and Applications, 37 (2016), 836–860.
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Quasi-Toeplitz matrices: analysis, algorithms
and applications

Dario A. Bini1

1Università di Pisa

Abstract
Let a(z) =

∑+∞
i=−∞ aiz

i be a complex valued function defined for z ∈ C, |z| = 1. The semi-infinite
matrix T (a) = (ti,j)i,j∈Z+ is said Toeplitz matrix associated with a(z) if ti,j = aj−i. Typically,
Toeplitz matrices are encountered in mathematical models where a shift invariance property, in time
or in space, is satisfied by some entity.

Many queueing models from the applications are described by quasi-Toeplitz (QT) matrices,
that is, matrices of the form A = T (a) + E where E is a compact correction. For instance, in
the random walk along a half-line, the probability transition matrix is the sum of a semi-infinite
tridiagonal Toeplitz matrix and a correction E which is nonzero only in the entry (1,1). More
complex situations are encountered if the domain of the random walk is the quarter plane where the
probability matrix is block Toeplitz with Toeplitz blocks plus finite rank corrections.

The main computational problems that one encounters in this framework include computing
matrix functions, solving polynomial matrix equations, and solving linear systems where the input
matrices are QT.

In this talk, after pointing out the role of QT matrices in certain applications, we introduce some
matrix norms, which make the class of QT matrices a Banach algebra and at the same time, are com-
putationally tractable. Then we introduce the class of QT matrices representable by a finite number
of parameters together with a matrix arithmetic on this class. This way, we may approximate QT
matrices by using a finite number of parameters in the same way as real numbers are approximated
by floating point numbers.

Finally, we introduce algorithms for the solution of the main computational problems encoun-
tered in this framework like computing the inverse matrix by means of the Wiener-Hopf factoriza-
tion, computing the matrix exponential, solving quadratic matrix equations encountered in Quasi–
Birth-Death stochastic processes where matrix coefficients are QT matrices.

Examples of applications are shown together with numerical experiments.
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Numerical Analysis of long-wave models for
surface water waves

Vassilios A. Dougalis1

1Department of Mathematics, National and Kapodisutrian University of Athens, and Institute of Applied and Computational Math-
ematics, FORTH

Abstract
In this talk, attention will be given to long-wave (shallow water) models that describe two-way prop-
agation of surface water waves, approximating the 2d Euler equations. These will include the non-
linear hyperbolic system of the shallow water equations, the weakly nonlinear dispersive Boussinesq
systems, the fully nonlinear dispersive Serre (or Green-Naghdi) equations, and the Camassa-Holm
equation. A survey will be given of issues such as modelling, well-posedness of the various mod-
els, and the numerical analysis of these systems. Results of numerical experiments that illuminate
properties of solitary-wave solutions of the dispersive systems will also be shown.

21



RandNLA: Randomization in Numerical Linear
Algebra

Petros Drineas1

1Purdue University, USA

Abstract
The introduction of randomization in the design and analysis of algorithms for matrix computations
(such as matrix multiplication, least-squares regression, the Singular Value Decomposition (SVD),
etc.) over the past 15 years provided a new paradigm and a complementary perspective to traditional
numerical linear algebra approaches. These novel approaches were motivated by technological
developments in many areas of scientific research that permit the automatic generation of large data
sets, which are often modeled as matrices.

In this talk, we will outline how such approaches can be used to approximately solve problems
such as least-squares and ridge-regression problems or approximate the Singular Value Decompo-
sition (SVD) of matrices. Applications of the proposed algorithms to data analysis tasks (with a
particular focus in population genetics) will also be discussed.
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Error estimate for the Gauss quadrature for-
mula: The Gauss-Kronrod vs the anti-Gaussian
approach

Sotirios E. Notaris1

1Department of Mathematics
National and Kapodistrian University of Athens
e-mail: notaris@math.uoa.gr

Abstract
It is well known that a practical error estimator for the Gauss quadrature formula is by means of
the corresponding Gauss-Kronrod quadrature formula developed by Kronrod in 1964. However,
recent advances show that Gauss-Kronrod formulae fail to exist, with real and distinct nodes in the
interval of integration and positive weights, for several of the classical measures. An alternative to
the Gauss-Kronrod formula, as error estimator for the Gauss formula, is the anti-Gaussian and the
averaged Gaussian quadrature formulae presented by Laurie in 1996. These formulae always exist
and enjoy the nice properties that, in several cases, Gauss-Kronrod formulae fail to satisfy. After a
brief overview of the Gauss-Kronrod, the anti-Gaussian and the averaged Gaussian formulae, we try
to answer the question whether there are measures for which the Gauss-Kronrod and the averaged
Gaussian formulae coincide, thus leading to the same error estimate for the Gauss formula. It is
quite remarkable that this is true for a certain, quite broad, class of measures, which is described in
terms of the three-term recurrence relation that the corresponding orthogonal polynomials satisfy.
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The Arnoldi process for ill-posed problems

Lothar Reichel
Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA. emailreichel@math.kent.edu

Abstract
The Arnoldi process is the basis for the GMRES method, which is one of the most popular iter-
ative methods for the solution of large linear systems of algebraic equations that stem from the
discretization of a linear well-posed problem. The Arnoldi process and GMRES also can be applied
to the solution of ill-posed problems. This talk discusses properties of Tikhonov regularization and
iterative methods, that are based on the Arnoldi process, for the solution of linear ill-posed prob-
lems. The talk presents joint work with Silvia Gazzola, Silvia Noschese, Paolo Novati, and Ronny
Ramlau.
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Dimension reduction techniques: Algorithms
and applications

Yousef Saad1

1University of Minnesota, USA

Abstract
A common tool that is exploited in solving data mining and machine learning problems is that of
‘dimension reduction’. Dimension reduction is based on the precept that the observed data often
lies in a noisy version of a low-dimensional subspace and so it is critical to work in this subspace
not only to reduce computational cost but also to improve accuracy. The talk will start with an
overview of the key concepts and then illustrate dimension reduction methods with applications such
as information retrieval, face recognition and matrix completion for recommender systems. One of
the main difficulties in many of the methods based on dimension reduction is to find the inherent
approximate rank of the data at hand. We will show how a few simple random sampling methods
for computing spectral densities and counting eigenvalues can be used for this purpose. Finally,
if time permits, we will report on our first experiments in ‘materials informatics’, a methodology
which blends data mining and materials science.
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Review of the convergence of some Krylov sub-
spaces methods for solving linear systems of
equations with one or several right hand sides

Hassane Sadok1, Mohammed Bellalij2

1LMPA, Université du Littoral,50, rue F. Buisson, BP 699, 62228 CALAIS-Cedex, FRANCE A
2Université de Valenciennes, Le Mont Houy, F-59313 Valenciennes Cedex, FRANCE.

Abstract
Krylov subspace methods are widely used for the iterative solution of a large variety of linear sys-
tems of equations with one or several right hand sides.

In this talk, we will derive new bounds for the GMRES method of Saad and Schultz, for solving
linear system. We will give a sample formula for the norm of the residual of GMRES based on the
eigenvalue decomposition of the matrix and the right hand side. This formula allows us to generalize
the well known result on the convergence behavior of GMRES when the matrix has a full set of
eigenvectors. The explicit formula of the residual norm of the GMRES when applied to normal
matrix, which is a rational function, is given in terms of eigenvalues and of the components of the
eigenvector decomposition of the initial residual. By minimizing this rational function over a convex
subset, we obtain the sharp bound of the residual norm of the GMRES method applied to normal
matrix, even if the spectrum contains complex eigenvalues. Hence we completely characterize the
worst case GMRES for normal matrices. We use techniques from constrained optimization rather
than solving the classical min-max problem (problem in polynomial approximation theory)

Known as one of the best iterative methods for solving symmetric positive definite linear sys-
tems, CG generates as FOM an Hessenberg matrix which is symmetric then triangular. This specific
structure may be really helpful to understand how does behave the convergence of the conjugate
gradient method and its study gives an interesting alternative to Chebyshev polynomials. The talk
will deals also about some new bounds on residual norms and error A-norms using essentially the
condition number. We will show how to derive a bound of the A- norm of the error by solving a
constrained optimization problem using Lagrange multipliers.

References
[1] M. BELLALIJ AND H. SADOK, Approximation and convex programming approaches for solving a minmax

problem, Elect. Trans. Num. Anal., 33 (2008), pp. 17-30.

[2] I. C. F. IPSEN, Expressions and bounds for the GMRES residuals, BIT, 40 (2000), pp.524–535.

[3] J. LIESEN AND P. TICHY ,The worst-case GMRES for normal matrices, BIT, 44 (2004), pp. 79–98.

[4] Y. SAAD, Iterative Methods for Solving Sparse Linear Systems, SIAM, Philadelphia, 2003.

[5] Y. SAAD AND M.H. SCHULTZ, GMRES : a Generalized Minimal Residual algorithm for solving nonsym-
metric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp.856–869.

[6] H. SADOK, Analysis of the convergence of the Minimal and the Orthogonal residual methods, Numer. Algo-
rithms, 40 (2005), pp. 101-115.

26



Envelope: Localization for the Spectrum of a
Matrix

Maria Adam1, Katerina Aretaki2, Panos Psarrakos2, Michael Tsatsomeros3

1University of Thessaly
2National Technical University of Athens
3Washington State University

Abstract
New and old results will be presented on the envelope, E(A), which is a bounded region in the
complex plane that contains the eigenvalues of a complex matrix A. E(A) is the intersection of an
infinite number of regions defined by elliptic curves. As such, E(A) resembles and is contained
in the numerical range of A, which is the intersection of an infinite number of half-planes. The
envelope, however, can be much smaller than the numerical range, while not being much harder to
compute.
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[1] A. Aretaki, P.J. Psarrakos, and M.J. Tsatsomeros. The Envelope of Tridiagonal Toeplitz Matrices and Block-

Shift Matrices. Linear Algebra and its Applications, 532:60-85, 2017.
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Linearizations of polynomial and rational matrices

Paul van Dooren1

1Catholic University of Louvain, Belgium

Abstract
We show that the problem of linearizations of polynomial and rational matrices is closely related to
the polynomial matrix quadruples introduced by Rosenbrock in the seventies to represent rational
transfer functions of dynamical systems. We also recall the concepts of irreducible and strongly
irreducible quadruples which were introduced in the eighties, and show how they relate to the lin-
earizations that are more common in the numerical linear algebra community. We then show that
the family of strong linearizations of matrix polynomials, called “block Kronecker pencils”, as well
as their extension to rational eigenvalue problems, nicely fit in that general framework. The novelty
of these block Kronecker pencils is that they can be proven to be backward stable in a structured
sense, for the polynomial matrix case as well as for the rational matrix case.

This is based on joint work with F. Dopico (UC3M), P. Lawrence (KULeuven), J. Perez (UMon-
tana) and M.C. Quintana (UC3M).
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Application of PLSQ to Special Function Values

Thomas Richard1

1Senior Application Engineer, Maplesoft Europe GmbH, trichard@maplesoft.com

Abstract
We are demonstrating how advanced semi-numerical techniques help in reconstructing exact values
from numerical evaluation of special functions and definite integrals of such functions. Among the
considered special functions are integrals of Airy wave functions and special values of auxiliary
elliptic functions that arise as quotients of Jacobi Theta series. Applied techniques include LLL
(Lenstra-Lenstra-Lovasz method of finding “short” vectors in integer lattices) and PSLQ (Partial
Sum of Least Squares, by Bailey and Ferguson). Both techniques are implemented in Maple’s Inte-
gerRelations package, and wrapped into the “identify” command for ease of usage. However, these
techniques typically require very high precision and hence substantial computing power. Several
examples show the successful application of PSLQ method in particular. Exact results returned by
these methods must not be mixed up with proven results, but can serve as a starting point for further
investigation.

Keywords: PSLQ, LLL, Special Functions, Minimal Polynomials, Maple, “identify” command
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New Interpolation features in Maple 2018

Thomas Richard1

1Senior Application Engineer, Maplesoft Europe GmbH, trichard@maplesoft.com

Abstract
Maple 2018 contains a new package for interpolating structured and unstructured data in any dimen-
sion. The supported methods include Kriging, inverse distance weighted, lowest / nearest / natural
neighbor, radial basis functions, and more. The Interpolate command provides an interface to all
interpolation methods. It directly returns objects that behave like normal mathematical functions.
Previous versions of Maple already included interpolation methods for 1-dimensional data and data
given for a grid of points. In Maple 2018, it is possible to interpolate data given for points in ar-
bitrary, unstructured locations. The kriging interpolation method supports some extra functionality
backed by statistical theory. In particular, it allows one to generate random data that is spatially
correlated according to a so-called variogram. We will demonstrate interactive examples of all new
interpolation methods in Maple 2018.

Keywords: Interpolation, Irregular Meshing, Structured and Unstructured Data, Maple
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A Stabilized bi-grid method for both Allen-Cahn
and Navier-Stokes equations

Hyam ABBOUD1

1Département de mathématiques, Faculté des Sciences II, Université Libanaise, Fanar, Liban

Abstract
In this talk, we propose a bi-grid scheme framework for both Allen-Cahn and Navier-Stokes equa-
tions in Finite Element Method. The new techniques are based on the use of two finite element
spaces, a coarse one and a fine one, and on a decomposition of the solution into mean and fluctuant
parts. This separation of the scales, in both space and frequency, allows to build a stabilization on
the high modes components: the main computational effort is concentrated on the coarse space on
which an implicit scheme is used while the fluctuant components of the fine space are updated with
a simple semi-implicit scheme; they are smoothed without deterioring the consistency. A coupling
for both equations is made and the numerical examples we give show the good stability and the
robustness of the new method. An important reduction of the computation time is also obtained
when comparing our methods with fully implicit ones.

References
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Finite difference Eulerian-Lagrangian schemes
for hyperbolic problems with discontinuous flux
and stiff source

Eduardo Abreu1, Panters Bermudez2, Vitor Matos3, John Perez4

1University of Campinas, Department of Applied Mathematics, Brazil
2Fluminense Federal University, Brazil
3University of Porto, Portugal
4Metropolitan Institute of Technology, Colombia

Abstract
We formally develop a family of finite-difference shock-capturing schemes. This work also con-
siders the questions of convergence of finite-difference approximations towards the entropic weak
solution (correct shocks) of scalar, one-dimensional conservation laws with strictly convex and
nonconvex flux functions. The finite-difference scheme is extended towards the viscosity solution
of scalar, nonlinear multi-dimensional nonconvex (e.g., Buckley-Leverett) and convex (e.g., invis-
cid Burgers) model problems, which are presented and discussed. A new feature of the proposed
method is the tracing forward to deal with balance laws and hyperbolic problems instead of trace
backward in time over each time step interval. Indeed, we do not use approximate/exact Riemann
solvers, and we do not use upwind source term discretizations either. Thus, we have a simple and
fast Lagrangian-Eulerian solver for hyperbolic problems with discontinuous flux and stiff source.
Our approach is based on a space-time Eulerian-Lagrangian framework introduced in [1]. Numeri-
cal tests show the robustness and accuracy of the method for a wide range of non-trivial applications
available in the literature [2, 3, 4].
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MPDATA Meets Black-Scholes:
Derivative Pricing as a Transport Problem

Sylwester Arabas1,2, Ahmad Farhat
1Chatham Financial Corporation Europe, Cracow, Poland (affiliation at the time of research)
2AETHON Engineering Consultants, Athens, Greece (present affiliation)

Abstract
MPDATA stands for Multidimensional Positive Definite Advection Transport Algorithm. The itera-
tive, explicit-in-time algorithm was introduced in [1] as a robust numerical scheme for atmospheric
modelling applications. Extensions and generalisations of MPDATA continuously developed over
the years constitute a family of numerical schemes offering high-order, sign-preserving and non-
oscillatory solutions for transport problems (for a review, see e.g. [2], recent developments include
third-order accurate formulation [3]). There is a multitude of documented applications of MPDATA
across diverse domains. In the present work we demonstrate applicability of the algorithm for solv-
ing PDEs arising in financial derivative instrument pricing.

We present a generalisable framework for solving Black-Scholes-type equations by first trans-
forming them into advection-diffusion problems, and numerically integrating using an iterative ex-
plicit finite-difference approach, in which the Fickian term is represented as an additional advective
term. Leveraging this mathematical equivalence between Black-Scholes-type models and transport
models, we detail applications of MPDATA to numerically reproduce the analytical solution of a
celebrated benchmark problem — the Black-Scholes formula for pricing of European options —
and to numerically solve the associated free boundary problem arising in the valuation of American
options. These results are used for convergence analysis.

Presented work is based on [4]. Numerical solutions are obtained using libmpdata++ [5].
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Regularization and differential quadrature pro-
cedures for dynamic analysis of beams with
arbitrary discontinuities

Yassin Belkourchia1,*, Lahcen Azrar1,2, Nacir Chafik1

1Research Center STIS, M2CS, Department of Applied Mathematics and Informatics, ENSET, Mohammed V University, Rabat,
Morocco
2Department of Mechanical Engineering, Faculty of Engineering, KAU, Jeddah, Saudi Arabia
*Corresponding author: yassin.belkourchia@um5s.net.ma

Abstract
Many physical and mechanical phenomena that can be well described by means of the Dirac-delta
function and its derivatives. For instance, the dynamics of beams with an arbitrary number of
Kelvin-Voigt viscoelastic rotational joints, translational supports, and attached lumped masses un-
der heat source points can be mathematically modeled by means of the Dirac-delta function and its
derivatives. The resulting partial differential equation has to be handled by means of well adapted
numerical procedures. In this work, the differential quadrature method (DQM) is adapted for space
an implicit scheme for time discretisation. The DQM is a straightforward method that can be imple-
mented with few grid points and resulting with a reasonably good accuracy. However, the DQM is
well-known to have some difficulty when applied to partial differential equations involving singular
functions like the Dirac-delta function. This is caused by the fact that the Dirac-delta function and
its derivatives cannot be directly discretized by the DQM. To overcome this difficulty, this work
presents a combination of the DQM with a regularization procedure. Thanks to this regulariza-
tion of the Dirac-delta and its used derivatives, the resulting differential equations can be directly
discretized using the DQM. To validate the applicability of the proposed formulation and its im-
plementation, computational examples of beams with arbitrary discontinuities are considered. The
obtained results are well compared with the analytical and numerical results available in the litera-
ture.
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Solving nonlinear systems of PDEs with the
Partition of Unity - RBF method via the trust-
region algorithm.

Francisco Bernal1, Elisabeth Larsson2, Alfa R.H. Heryudono3

1CMAP, École Polytechnique (Paris, France)
2Department of Information Technology, Uppsala University (Sweden)
3Department of Mathematics, University of Massachusetts Dartmouth (USA)

Abstract
It is well known that globally-supported Radial Basis Function (RBF) collocation schemes have
wonderful approximation properties of partial differential equations (PDEs), but are restricted to
rather smallish problems. The recent Partition of Unity - RBF (PURBF) method [1] substantially
lifts this limitation, while upholding the geometrical flexibility, straightforward coding, intuitive
discretisation, and spectral accuracy of the global RBF approach. Moreover, when combined with
the RBF-QR algorithm [2], the notorious trade-off between stability and accuracy also stops being
a delicate issue. These features lend PURBF the potential of achieving the breakthrough of RBF
methods into large-scale PDE applications.

In this work, we extend the trust-region scheme for nonlinear elliptic PDEs introduced in [3] to
PURBF.

As a relevant application, we solve the steady flow of a viscous fluid past a cylinder, arguably the
simplest—yet not trivial—example of fluid-structure interaction. As the Reynold’s number grows,
the eddy structure in the wake of the flow becomes increasingly involved. In order to adequately re-
solve it, the discretization must be refined in the recirculation area, while the computational domain
must be extended further away from it.

We pose the relevant Navier-Stokes equations in natural variables and discretize them with the
PURBF method. The resulting nonlinear system of collocation equations is optimally handled with
the trust-region algorithm. The accuracy of the proposed numerical method is demonstrated by
comparison with the reference solution [4] (up to Re = 40), and by monitoring the drag coefficient,
beyond it.
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Numerical approximation to the fractional non-
linear Schrödinger equation
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Abstract
In this talk, a numerical method for the fractional nonlinear Schrödinger equation (fNLS) (see e. g.
[1, 3, 4] and references therein) will be introduced and analyzed. The scheme will be applied to
study the dynamics of traveling soliton solutions of the cubic fNLS whose existence was recently
derived in [2].
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conditioner for Reservoir Simulation scalable
on Many-Core architecture

Jean-Marc GRATIEN1, Hassan BATIN2

1Computer Science Department, IFP Energies Nouvelles, Rueil Malmaison, France
Email: jean-marc.gratien@ifpen.fr
2Email: batinhassan@gmail.com

Abstract
In the evolution of High Performance Computing, multi-core and many-core systems are a com-
mon feature of new hardware architectures. The introduction of very large number of cores at the
processor level is really challenging because it requires to handle multi level parallelism at various
levels either coarse or fine to fully take advantage of the offered computing power. The induced
required programming efforts can be fixed with parallel programming models based on the data
flow model and the task programming paradigm [1]. Nevertheless many of standard numerical al-
gorithms must be revisited as they cannot be easily parallelized at the finest levels. Iterative linear
solvers are a key part of petroleum reservoir simulation as they can represent up to 80% of the total
computing time. In these algorithms, the standard preconditioning methods for large, sparse and
unstructured matrices – such as Incomplete LU Factorization (ILU) or Algebraic Multigrid (AMG)
– fail to scale on shared-memory architectures with large number of cores. Recently, multi-level do-
main decomposition (DDML) preconditioners [2], based on the popular Additive Schwarz Method
(ASM), have been introduced. Their originality resides on an additional coarse space operator that
ensures robustness and extensibility. Their convergence properties have been studied mainly for
linear systems arising from the discretization of PDEs with Finite Element methods. In this paper,
we propose an adaptation for reservoir simulations, where PDEs are usually discretized with cell
centered finite volume schemes. We discuss on our implementation based on the task programming
paradigm with a data flow model [3]. We validate our approach on linear systems extracted from
realistic petroleum reservoir simulations. We study the robustness of our preconditioner with re-
spect to the data heterogeneities of the study cases, the extensibility regarding the model sizes and
the scalability of our implementation regarding the large number of cores provided by new KNL
processors or multi-nodes clusters. Finally we benchmark this new preconditioner to the ILU0 and
the AMG preconditioners, the most popular ones in reservoir simulation.
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One approach to the numerical simulation of
the filtration problem in the presence of wells
with given total flow rates
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Abstract
First, we discuss an elliptic boundary-value problem, describing a filtration of single-phase liquid,
in the presence of wells of relatively small diameters, on which the integral flow rates of the fluid are
given at constant but unknown pressures. As it is known, the solution of such a problem is reduced
to solving a set of auxiliary problems according to the number of wells. We propose an alternative
approach that consists of solving only one problem in a mixed weak formulation. In this case, a
mixed formulation in the form of a system of equations of the first order makes it possible to carry
out the extension of the solution by a constant into the wells, and the approach can be treated as
a sort of fictitious domain method. Numerical implementation is based on a mixed finite element
method with the Raviart-Thomas basis functions of the least degree. Error estimates are obtained
and the results of computational experiments are presented.

Second, we expand the approach proposed to the non-stationary problem of a two-phase liquid
filtration, and to the 3D filtration problem with wells parallel to one of the coordinate axes. In this
case, the total velocity and pressure satisfy the quasi-stationary system of saddle-type equations
discussed above. The non-stationary equation for saturation is also obtained using the fictitious
domain method. The main feature of the approach proposed is that pressure and saturation belong
to the same functional space. This is achieved by setting the phase velocity as the orthogonal
projection of the total velocity multiplied by the relative permeability of the phase to the subspace of
vector-functions with square summable divergence. Similar arguments are given for approximation
of finite-dimensional subspaces. In the case of 3D problem, the solution in the direction of the
wells is much smoother, and, therefore, it makes sense to introduce fluxes only in the directions
orthogonal to the wells. As a result, we arrive at a mixed weak formulation, which is anisotropic
in the sense of smoothness. For the numerical implementation a combination of the finite element
method and the mixed finite element method is used, which we call the anisotropic mixed finite
element method.

40



Iterative methods for the obstacle problem of a
Naghdi’s shell
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Abstract
In this work we consider some iterative methods for solving a kind of variational inequalities arises
when we consedring the finite element approximation of the obstacle problem of a Naghdi’s shell
formulated in Cartesian coordinates. The solution of the variational inequality is sought in a con-
vex and not necessarily linear subset and it must satisfy another constraint, namely, a tangency
requirement on the rotation field. In order to handle theses constraints we purpose mixed formula-
tion which leads to ” systems ” with double saddle point structure. Both Uzawa-type methods and
preconditioned Krylov subspace methods are discussed.
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Numerical insights of an improved SPH method
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Abstract
In this paper we discuss on the enhancements in accuracy and computational demanding in approxi-
mating a function and its derivatives via Smoothed Particle Hydrodynamics. The standard method is
widely used nowadays in various physics and engineering applications [1],[2],[3]. However it suf-
fers of low approximation accuracy at boundaries or when scattered data distributions is considered.
Here we reformulate the original method by means of the Taylor series expansion and by employ-
ing the kernel function and its derivatives as projection functions and integrating over the problem
domain [3]. In this way, accurate estimates of the function and its derivatives are simultaneously
provided and no lower order derivatives are inherent in approximating the higher order derivatives.
Moreover, high order of accuracy can be obtained without changes on the kernel function avoiding
to lead unphysical results such as negative density or negative energy that can lead to breakdown of
the entire computation in simulating some problems [1]. The modified scheme obtains the required
accuracy, but the high computational effort makes the procedure rather expensive and not easily
approachable in the applications. To this aim we make use of fast summations to generate a more
efficient procedure, allowing to tune the desired accuracy. Working with the Gaussian function we
proceed by applying the improved fast Gaussian transform as valid alternative to efficiently com-
pute the summations of the kernel and its derivatives [4]. We discuss about the accuracy and the
computational demanding of the improved method dealing with different sets of data and bivariate
functions.
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A Fast Local Relaxation Solver for Certain 4th
Order PDEs
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Abstract
We consider the following abstract evolution problem

{
ut − div(M(u)∇w) = 0,

w + E′−(u)− E′+(u) + ε2∆u ∈ ∂IS(u),
(1)

where M,E+, E− : S → R with M(u) ≥ 0 and E± convex, S ⊂ R is convex (but not necessarily
compact). The indicator function IS(u) is equal to 0 if u ∈ S and∞ otherwise, whereas the set-
valued function ∂IS(u) is its subdifferential. Note in particular that (1) implies u(x) ∈ S almost
everywhere. A number of interesting problems can be cast in this framework:
• Cahn-Hilliard: M(u) = 1, E−(u) = u2

2 , E+(u) = u4

4 and S = R,

• Thin films [1]: M(u) = u3

3 , E−(u) = 0, E+(u) = 0 and S = [0,∞),
• Deep quench obstacle problem [2]: M(u) = 1 − u2 (degenerate) or M(u) = 1 (non-

degenerate), E−(u) = u2

2 , E+(u) = 0 and S = [−1, 1].
CombiningE(u) = E+(u)−E−(u) (convex-concave splitting) allows us to associate a free energy∫

ΩE(u) dx + ε2

2 ‖∇u‖2L2 with each concrete problem. Our scheme is a reformulation of a semi-
implicit FEM scheme introduced in [3] and based on an approximation introduced in [4]. We recast
the scheme as a (discrete) convex optimization problem with convex constraints at each time step,
and derive a set of relaxation operators that are guaranteed to preserve the total mass and the hard
constraint u ∈ S, while reducing the free energy. Furthermore the operators are locally supported
and can be applied in parallel, allowing for a highly efficient implementation on modern computer
hardware (GPU acceleration). Finally, we discuss the connection of this scheme to a recent study
of these type of problems as gradient flows in weighted-Wasserstein metrics [5].
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Optimal preconditioners for Fractional Differ-
ential Equations
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Abstract
Fractional partial order diffusion equations are used to describe diffusion phenomena, that cannot
be appropriately modeled by the well known second order diffusion equations.We mention that
Fractional Differential Equations (FDEs) are of numerical interest, since there exist only few cases
in which the analytic solution is known. Using the implicit Euler formula and the shifted Grünwald
formula, we lead to a linear system whose coefficient matrix has a Toeplitz like structure. Taking
into account the spectral analysis of such kind of matrices ([1]), we propose a preconditioner for
Krylov methods, that under some suitable assumptions performs superlinear convergence for such
kind of systems. In addition we extend the idea of such a construction to cover the multidimensional
case, i.e Fractional PDE’s. A number of numerical examples show the effectiveness of the proposed
preconditioners.
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Abstract
The research of the processes of a terahertz radiation generation is a topical for such physical prob-
lems as turbulence plasma heating on open magnetic traps, fast burning of a target in the inertial
nuclear fusion and for other problems. The terahertz radiation can find implementation in the ma-
terial investigation, production quality control, etc. There are many ways of obtaining terahertz
radiation sources. One of such methods is getting the radiation by the interaction of an electron
beam with the plasma. This process can be examined by both experiments and the numerical mod-
eling. In the current work the numerical modeling which permits us to analyze the dependence of
the radiation efficiency on different parameters has been carried out.

The most qualitative study can be carried out by a full kinetic numerical model. However the
difficulties appearing at the practical implementation of such models deal with the big difference of
characteristic space scales for electrons and ions. It leads to developing the hybrid (combined) mod-
els, where the kinetic Vlasov equation is used to describe the motion of one component of plasma
and the magneto-hydrodynamic approach to describe the motion of another one. The decrease of
requirements on the architecture and memory of computers, comparing with those of the fully ki-
netic models, provided the vast expansion of the hybrid models. The research based on such models
is the most perspective with regard to a computational experiment.

In the present work a 3D hybrid numerical model to describe an electron plasma beam entering
a plasma box surrounded by a vacuum is considered. Here to describe the motion of electrons of
the beam and plasma the kinetic description in terms of guiding center is used, whether for ions
the MHD approach is utilized. To solve the Vlasov equation the particle-in-cell (PIC) method is
used. The comparison with a fully kinetic model will provide to determine the limits of use of the
developed model and, also, will be an independent test to verify a 3D kinetic model.

The research was supported by the Russian Science Foundation (RSF) under Grant 16-11-10028.
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Coupled multipoint flux and multipoint stress
mixed finite element methods for poroelasticity

Ivan Yotov1
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Abstract
We discuss mixed finite element approximations for the Biot system of poroelasticity. We employ
a weak symmetry elasticity formulation with three fields - stress, displacement, and rotation. We
study two elasticity formulations, with poroelastic and elastic stress as primary unknown, respec-
tively. Stability bounds and error estimates are derived for both formulations for arbitrary order
mixed spaces. We further develop a method that can be reduced to a cell-centered scheme for the
displacement and the pressure, using the multipoint flux mixed finite element method for flow and
the recently developed multipoint stress mixed finite element method for elasticity. The methods
utilize the Brezzi-Douglas-Marini spaces for velocity and stress and a trapezoidal-type quadrature
rule for integrals involving velocity, stress, and rotation, which allows for local flux, stress, and
rotation elimination. We perform stability and error analysis and present numerical experiments
illustrating the convergence of the method and its performance for modeling flows in deformable
reservoirs.
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Abstract
For a steady and creeping flow of an incompressible quasi-Newtonian fluid, the most used formula-
tion is based on the strain rate tensor. For Ω a bounded domain of R2 with a Lipschitz boundary Γ
and a given mass forces f defined in Ω, the combination of the conservation equations leads to the
Nonlinear Stokes problem:

{
−div

(
2ν(|d(u)|)d(u)

)
+∇p = f in Ω,

divu = 0 in Ω,
(1)

where u and p, the unknowns of the problem, are the velocity and pressure, respectively. For ν0 > 0
a reference viscosity and r a fluid characteristic real parameter verifying 1 < r <∞, the viscosity
function ν(·), depending on |d(u)|, is usually given by one of the two following famous models:

∀x ∈ R∗
+, Power law : ν(x) = ν0 x

r−2, Carreau law : ν(x) = ν0

(
1 + x

)(r−2)/2
.

System (1) is supplemented by a set of boundary conditions.
The generalized Stokes problem (1) and its approximation by standard finite elements was

widely studied. In these works, only the primal variables velocity and pressure are taken into ac-
count. But, for various reasons, one may need also information on the dual variables as velocity
gradient ∇u, strain rate tensor d(u), extra-stress tensor σ = 2ν(|d(u)|)d(u) etc. To do so, one
need to build appropriate mixed formulations. The aim of this work is to present an exhaustive
review on the available techniques using the mixed formulations for the problem (1), obtained for
example in [2, 3, 4], and give some new results on the approximation of those problems.
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The rational-extended Krylov subspace method
for model reductions
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Abstract
Consider the multi-input multi-output (MIMO) linear time-invariant (LTI) system described by the
state-space equations

{
ẋ(t) = Ax(t) +B u(t)
y(t) = C x(t),

(1)

where x(t) ∈ Rn denotes the state vector and u(t), y(t) ∈ Rp are the input and output vectors
respectively of the (LTI) system (1). When working with high order models, it is reasonable to look
for an approximate model:

{
ẋm(t) = Am xm(t) +Bm u(t)
ym(t) = Cm xm(t),

such as Am ∈ Rm×m, Bm, C
T
m ∈ Rm×p, xm(t), ym(t) ∈ Rm, and m� n, while maintaining the

most relevant properties of the original system (1).
Several approaches in this area have been used. Among these approaches are the Krylov sub-
space methods. These are projection methods that have played a major role in large scale model
reductions. Projection-type methods determine an approximation of the approximate solution by
projecting a given problem onto a much smaller approximation space. Projection-type methods de-
termine an approximation of the approximate solution by projecting a given problem onto a much
smaller approximation space. The approximation spaces that have been widely studied in the past
for a variety of problems are the standard Krylov space, the inverse Krylov space, and the rational
Krylov space. Each of the aforementioned spaces mentioned has advantages and disadvantages.
Thereby, we introduce a new method that will be used for reducing the transfer function and can be
extended to approach the solutions of Sylvester and Riccati equations.
The general idea of this method is to provide a new Krylov subspace that is richer than the rational
Krylov subspace as well as the extended Krylov subspac. This idea comes from the lack of infor-
mation on the matrix A when using rational Krylov subspace. That is why, we introduce a new
method that we name the extended-rational Krylov method. The objective of this work is to exploit
this new space to approach the dynamical system and the transfer function.
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Abstract
Golub and Meurant describe how pairs of Gauss and Gauss–Radau quadrature rules can be ap-
plied to determine inexpensively computable upper and lower bounds for certain real-valued matrix
functionals defined by a symmetric matrix. However, there are many matrix functionals for which
their technique is not guaranteed to furnish upper and lower bounds. In this situation, it may be
possible to determine upper and lower bounds by evaluating pairs of Gauss and anti-Gauss rules.
Unfortunately, it is difficult to ascertain whether the values determined by Gauss and anti-Gauss
rules bracket the value of the given real-valued matrix functional. Therefore, generalizations of
anti-Gauss rules have recently been described, such that pairs of Gauss and generalized anti-Gauss
rules may determine upper and lower bounds for real-valued matrix functionals also when pairs of
Gauss and (standard) anti-Gauss rules do not. The available generalization requires the matrix that
defines the functional to be real and symmetric. The present paper extends generalized anti-Gauss
rules in several ways: The real-valued matrix functional may be defined by a nonsymmetric matrix.
Moreover, extensions that can be applied to matrix-valued functions are presented. Estimates of
element-wise upper and lower bounds then are determined. Finally, modifications that yield simpler
formulas are described.
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A Householder-based algorithm for Hessenberg-
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Abstract
Reducing the matrix pair (A,B) to Hessenberg-triangular form is an important and time-consu-
ming preprocessing step when computing eigenvalues and eigenvectors of the pencilA−λB by the
QZ-algorithm. Current state-of-the-art algorithms for this reduction are based on Givens rotations,
which limits the possibility of using efficient level 3 BLAS operations, as well as parallelization
potential on modern CPUs. Both of these issues remain even with partial accumulation of Givens
rotations [1], implemented, e.g., in LAPACK.

In this talk we present a novel approach for computing the Hessenberg-triangular reduction,
which is based on using Householder reflectors. The key element in the new algorithm is the lesser
known ability of Householder reflectors to zero-out elements in a matrix column even when ap-
plied from the right side of the matrix [2, 3]. The performance of the new reduction algorithm is
boosted by blocking and other optimization techniques, all of which permit efficient use of level 3
BLAS operations. We also discuss measures necessary for ensuring numerical stability of the algo-
rithm. While the development of a parallel version is future work, numerical experiments already
show benefits of the Householder-based approach compared to Givens rotations in the multicore
computing environment.
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Abstract
In this talk we introduce a rational QZ method for the dense, unsymmetric, generalized eigenvalue
problem. The method operates on matrix pairs in Hessenberg form and implicitly performs nested
subspace iteration driven by elementary rational functions. This is achieved without solving any
systems. We review a direct reduction method to Hessenberg form and demonstrate that subspaces
can be deflated already during the reduction phase. We introduce a shifted implicit rational QZ
step on a Hessenberg pair. Numerical experiments demonstrate that a good choice of poles can
significantly speedup the convergence compared to the QZ method.
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ing large eigenvalue problems?
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Abstract
In this talk we present a new type of restarted Krylov methods for calculating peripheral eigenvalues
of a large sparse symmetric matrix, G. The new framework avoids the Lanczos tridiagonalization
algorithm and the use of polynomial filtering. This simplifies the restarting mechanism and allows
the introduction of several modifications. Convergence is assured by a monotonicity property that
pushes the computed Ritz values toward their limits.

One improvement lies in the rule for determining the starting vector of the Krylov matrix that is
built at each iteration. This rule is much simpler and intuitive than rules that are based on polynomial
filtering. The Krylov matrix is generated by a three term recurrence relation that is based on MGS
orthogonalization. These modifications lead to fast rate of convergence.

The differences between the new approach and the Lanczos approach become significant in
inner-outer iterative methods which are using inexact inversions to compute small eigenvalues. The
idea is to replace G with an approximate inverse of G, which is obtained by solving a linear system.
So each column of the Krylov matrix requires the solution of a new linear system whose matrix is G.
In this case Lanczos methods compute Ritz pairs of the approximate inverse of G, while our method
computes Ritz pairs of G. In inner-outer methods most of the computation time is often spent on the
inner iterations. This feature increases the appeal of the new approach, as the extra time that it pays
for deserting the Lanczos algorithm becomes negligible.

The new approach is easily adapted to compute a partial SVD of a large sparse m x n matrix,
A . Here it avoids the popular Lanczos bidiagonalization process. Instead the Krylov matrix that
is built at each iteration is generated by using the cross-product matrix, ATA , or an approximate
inverse of this matrix. Yet the singular triplets are computed from Ritz triplets of A. When using
the cross-product matrix to compute low-rank approximations there is no need to update estimates
of right singular vectors, which leads to considerable saving of storage.

The experiments that we have done are quite encouraging. In many cases the algorithm achieves
the required accuracy within a remarkable small number of iterations.
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Abstract
Many problems in machine learning can be simplified as the maximization (minimization) of a
generalized Rayleigh quotient, given by:

max
w

ρ(w;Q,P ) =
wTQw

wTPw
(1) (1)

where Q and P are positive definite matrices, and w 6= 0 is an optimal projection into a lower-
dimensional space which solves the problem (1). Two classical applications formulated as (1) are
principal composant analyis (PCA) and linear discriminant analysis (LDA). In order to deal with
non normal data distributions, a kernel embedding is commonly performed which generalizes the
previous criterion for any kind of distributions. Recently, we proposed a new kernel Rayleigh quo-
tient for solving the one class learning problem [1]. Unlike binary/multi-class classification meth-
ods, one class classification tries to isolate a target (positive) class when the negative class is either
poorly represented, even not at all or is not well statistically defined. Our formulation introduces
two regularized specific scatter matrices Q(y) and P (y) which are parameterized by an unknow
binary vector y determining the membership of a data to the positive or negative class. We show
in [1] that the optimal separation of these two data populations amounts then to achieve two joint
actions: dimensionality reduction and classification. However, several aspects limit its use: firstly,
the accuracy of the dimensionality reduction depends on the representativeness of the abnormal
data which can be low for specific data sets. Secondly, when the data dimensionality becomes much
greater than the training sample size, the method can be badly conditionned (singularity problem).

In this paper, we introduce a null space based extension of this criterion. The principle of this
extension is to introduce a joint subspace where the training target data set has zero covariance.
Then, a simple distance measure can be derived in this subspace to decide about abnormality of a
test data. We show here that this formulation implicitly avoids the singularity problem for under
sampled data sets. We show also that the dimension of this specific subspace is directly linked to
the contamination rate which is of course unknown. This issue is solved by introducing a single
artificial counter-example. This operating strategy allows both to reduce the size of the null space
to a single null direction which can be estimated from a simple power method and to maintain an
enough generalization performance. A comparative study with different one class learning methods
is conducted both on moderated and high dimensional data sets. An original application to the
detection of abnormal events in video sequences is also presented.
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A new eigenvalue algorithm for unitary Hes-
senberg matrices via quasiseparable repres-
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Abstract
We present an algorithm to compute eigenvalues of a unitary Hessenberg matrix U . Such a matrix
admits a quasiseparable of order one representation. We determine the eigenvalues of the matrix
U via eigenvalues of the Hermitian matrix A = 1

2(U + U∗) and the anti-Hermitian matrix B =
1
2(U − U∗). The matrices A and B have quasiseparable of order two representations and we apply
our previously developed methods to compute their eigenvalues.
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Abstract
In this work we present an efficient algorithm to solve total variation (TV) regularizations of im-
ages contaminated by a both blur and noise. The unconstrained structure of the problem suggests
that one can solve a constrained optimization problem by transforming the original unconstrained
minimization problem to an equivalent constrained minimization one. An augmented Lagrangian
method is developed to handle the constraints when the model is given with matrix variables, and an
alternating direction method (ADM) is used to iteratively find solutions. The solutions of some sub-
problems are belonging to subspaces generated by application of successive orthogonal projections
onto a class of generalized matrix Krylov subspaces of increasing dimension.
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Abstract
Graphs with absorption play an important role in applications such as the modeling of epidemics
spreading. Recently, K. A. Jacobsen and J. Tien [1] have discussed properties of the absorption
inverse Ld of the graph Laplacian L, a particular (1,2)-inverse of L, and have shown how the
absorption inverse can provide a wealth of information on the structure of the underlying graph.
For example, quantities associated with Ld can be used to define a distance on the graph, and to
develop graph partitioning heuristics. Moreover, the row sums of Ld can be used to rank the nodes
in a graph with absorption (i.e., they provide a centrality index). In this talk we will discuss some
computational aspects of the absorption inverse, including the use of matrix factorization and of
iterative methods for computing Ld and quantities associated with it. Furthermore, we examine
alternative centrality measures for ranking the nodes of graphs with absorption and compare them
to the the one proposed by Jacobsen and Thien.
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On a block approach for approximating selected
elements of the matrix inverse
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Abstract
Approximating selected elements of the matrix inverse and more general matrix functions is a topic
of importance in several applications, e.g. in data analytics [3]. The challenge is to achieve the
approximation more efficiently than the obvious alternative, that is computing the matrix function
in full. Recent methods to this effect, e.g. [4], attempt to exploit structural characteristics such as
element decay away from the main diagonal. We present a method for achieving the approxima-
tion of blocks of the matrix inverse lying along the diagonal. Inspired by the probing techniques
proposed in [4] we generalize to the case of block diagonally dominant matrices and exploit the
resulting norm-decay of the blocks of the inverse [1][2]. We present numerical experiments that
illustrate the features and performance of our method and its application.
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Abstract
In this talk, we will be considering the nonsymmetric differential Riccati matrix equation (NDRE
in short) of the form

{
Ẋ(t) = −AX(t)−X(t)D +X(t)SX(t) +Q, t ∈ [t0; tf ]

X(t0) = X0,
(1)

where A ∈ Rn×n, D ∈ Rp×p, Q ∈ Rn×p, S ∈ Rp×n and X(t) ∈ Rn×p.

The equilibrum solutions of (1) are the solutions of the corresponding nonsymmetric algebraic
Riccati equation (NARE)

−AX −XD +XSX +Q = 0. (2)

Large scale differential matrix equation are currently receiving a great deal of attention [4, 5]. For
NDREs, there is no existing method in the large scale case to our knowledge. In this talk, we
consider large scale NDREs with low rank right-hand sides. After some facts about the existence
of exact solutions to (1), we will show how to apply the extended block Arnoldi algorithm to get
low rank approximate solutions. We will consider the special case corresponding to NDREs from
transport theory. Numerical experiments will show that this approach is promising for large-scale
problems.
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Absolute value circulant preconditioners for non-
symmetric Toeplitz-related systems
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Abstract
Circulant preconditioning for symmetric Toeplitz systems has been well developed over the past
few decades. For a large class of such systems, descriptive bounds on the convergence of the con-
jugate gradient method can be obtained. For nonsymmetric Toeplitz systems, most work had been
focused on normalising the original systems until [J. Pestana and A. J. Wathen. SIAM J. MATRIX
ANAL. APPL. Vol. 36, No. 1, pp. 273-288, 2015] recently showed that theoretic guarantees on the
convergence of the minimal residual method can be established via a simple use of reordering. The
authors further proved that a suitable absolute value circulant preconditioner can be used to ensure
rapid convergence rate. In this talk, we show that the related ideas can also be applied to systems
defined by functions of Toeplitz matrices. Numerical examples are given to support our results.
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Estimating matrix functionals via extrapolation
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Abstract
A spectrum of applications arising from Statistics, Machine Learning, Network Analysis require
the computation of matrix functionals of the form xT f(A)y, where A is a diagonalizable matrix
and x, y are given vectors. In this work we are interested in efficiently computing bilinear forms
primarily due to their importance in several contexts. For large scale computation problems it is
preferable to achieve approximations of the bilinear forms avoiding the explicit computation of the
matrix function. For this purpose an extrapolation procedure has been developed, attaining the
approximation of the bilinear form with one, two or three term estimates in a complexity of square
order. The extrapolation procedure gives us the flexibility to define the moments of a matrix A
either directly or through the polarization identity. The presented approach is characterized by easy
applicable formulae of low complexity that can be implemented in vectorized form.
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Abstract
It is well known that preconditioned conjugate gradient (PCG) methods are widely used to solve
ill-conditioned real symmetric and positive definite Toeplitz linear systems Tn(f)x = b. This case
has been entirely studied while the case of real non-symmetric and non-definite Toeplitz systems
is still open. Toeplitz matrices have the same entries along their diagonals and are generated from
the Fourier coefficients of a 2π-periodic generating function or symbol f . Such systems appear
in various Mathematical Topics: Differential and Integral equations, Mechanics, Fluid Mechanics
and in Applications: signal processing, image processing and restoration, time series, and queueing
networks.

The PCG method, fails to solve non-symmetric and/or non-definite systems. In this paper we
focus on finding fast and efficient methods, based on Krylov subspaces, to solve large real non-
symmetric Toeplitz systems. Especially, we concentrate on the solution of such systems using the
Preconditioned Generalized Minimum Residual (PGMRES) method. Real non-symmetric Toeplitz
systems are generated by symbols f being complex 2π-periodic functions of the form f = f1+if2,
where f1 is a 2π-periodic even function while f2 is a 2π-periodic odd one. If f1 and f2 have roots at
some points in [−π, π], then the problem becomes ill-conditioned and some kind of preconditioning
is necessary. We propose efficient band Toeplitz preconditioners to solve this kind of problems. The
preconditioners are generated by symbols being trigonometric polynomials, which aim at raising the
roots and on the other hand at giving some kind of approximation to the functions f1 and f2. We
achieve a good clustering of the singular values of the preconditioned matrix in a small interval
around 1. Also, we discuss on how to generalize the results of the unilevel case to Block Toeplitz
systems (2-level), which are generated by 2-variate complex functions.

Finally, we show the efficiency of the proposed technique by presenting various numerical ex-
periments.
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Abstract
We study feasibility of using a method, obtained by developing the generalized global Arnoldi
process in conjunction with Tikhonov regularization, based on tensor format (called GGAT−BTF
method) to solve ill-posed tensor equations. More precisely, with the aid of the results given in [Nu-
mer. Linear Algebra Appl. 23 (2016) 444–466] and strategies used in [J Comput. Appl. Math. 236
(2012) 2078–2089], we construct an algorithm to solve Sylvester tensor equations with severely
ill-conditioned and possibly full coefficient matrices. Some theoretical results are presented and
applicability of the proposed is numerically examined for image restoration and solving a Sylvester
tensor equation arising from exploiting the Chebyshev collocation spectral method to solve the 3D
radiative transfer equation (RTE).

Keywords: Generalized Arnoldi process, Sylvester tensor equation, ill-conditioned, regularization
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Abstract
In applications of linear algebra including nuclear physics and structural dynamics, there is a need
to deal with uncertainty in the matrices. We focus on matrices that depend on a set of parameters
ω. In this talk, we are interested in the smallest eigenvalue of a large scale generalized eigenvalue
problem with symmetric positive definite matrices since in that case the eigenvalues are real and
the eigenvectors satisfy some orthogonality properties. If ω can be interpreted as the realisation of
random variables, one may be interested in statistical moments of the smallest eigenvalue. In order
to obtain statistical moments, we need a fast evaluation of the eigenvalue as a function of ω. Since
calculating this is costly for large matrices, we are looking for a small parametrized eigenvalue
problem, whose smallest eigenvalue makes a small error with the smallest eigenvalue of the large
eigenvalue problem.

The advantage, in comparison with a global polynomial approximation (on which, e.g., the poly-
nomial chaos approximation relies), is that we do not suffer from the possible non-smoothness of
the smallest eigenvalue. The small scale eigenvalue problem is obtained by projection of the large
scale problem. The idea is to filter out the subspace which is not needed for determining the smallest
eigenvalue. We developed projection methods based on the principle that an eigenvalue of the pro-
jected eigenvalue problem is also an eigenvalue of the large eigenvalue if the eigenvector is present
in the associated subspace. By this we interpolate between the points for which the eigenvector are
added to the subspace.

Besides this, we will also talk about the choice of interpolation points, how to efficiently check
the overall error and compare our method with a polynomial approximation. Numerical examples
from structural dynamics are given.
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Abstract
The reduction of a matrix to an upper J-Hessenberg is usually performed via the algorithm JHESS
(or via the recent algorithm JHMSH and its variants). This reduction is a crucial step in the SR-
algorithm (which is a QR-like algorithm), structure-preserving, for computing eigenvalues and
vectors, for a class of structured matrices. Unlike its equivalent in the Euclidean case, the JHESS-
algorithm may meet a fatal breakdown, causing a brutal stop of the computations or encounter
near-breakdowns, which are source of serious numerical instability.

In this talk, we present efficient strategies for curing fatal breakdowns and also for treating near
breakdowns. The effectiveness of such strategies are illustrated by numerical experiments.
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Abstract
We consider the Newton iteration of a matrix polynomial equation

P (X) =
n∑

k=0

AkX
k = AnX

n +An−1Xn−1 + · · ·+A1X +A0 = 0, (1)

which arises in stochastic problem. The elementwise minimal nonnegative solution S of (1) can
be obtained using Newton’s method with the zero initial value if the equation has the solution.
Moreover, the convergence rate of the iteration is quadratic if P ′S , the Fréchet derivative at S, is
nonsingular. If P ′S is singular, the convergence rate is at least linear. But, for any ε > 0, there exists
an integer i0 > 0 such that {Xi − S}∞i=i0

is in the ε-neighborhood of an one-dimensional space.
Then, with a modified Newton method

Xi+1 = Xi − λP ′−1Xi
(P (Xi)), (2)

we can reduce the iteration number. In the representation, we will give the proofs and some numer-
ical experiments of this abstract.
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Abstract
Cosine-sine decomposition is defined for both, orthonormal matrices partitioned into 2 × 1 block
matrix and for orthogonal matrices partitioned into 2×2 block matrix. We call these decompositions
2× 1 CSD and 2× 2 CSD, respectively. They display the connection between SVD’s of the blocks
of the matrix. Because of this connection, in the presence of small or close singular values, it is not
trivial to compute decompositions accurately.

In this talk, we present a new method for computing the 2× 1 CSD. The method runs two one-
sided Jacobi SVD algorithms simultaneously, one for each block. These algorithms construct same
sequence of transformations using information from both blocks. By doing so, the interconnection
of two SVD’s is maintained and the accuracy of the computed 2× 1 CSD is achieved.

Additionally, we discuss how any accurate 2× 1 CSD algorithm can be used to compute a 2× 2
CSD.
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Abstract
Machine learning has emerged as one of the primary clients for large scale singular value calcula-
tions. The matrices are typically very large so that dense SVD methods cannot be used. In compu-
tational sciences, iterative methods have been used to solve these type of problems, with methods
such as the recently proposed Golub-Kahan-Davidson pushing the envelope in accuracy and con-
vergence speed. In machine learning, combinations of randomized and iterative methods have risen
drastically in popularity because of their extreme efficiency.

One important constraint in machine learning is the size and nature of the matrices. In some
applications, matrices have no exploitable sparsity, which makes the matrix-vector multiplication
expensive in terms of operations, and even more expensive in terms of memory accesses. In other
applications, the matrix may only be available as streaming sets of columns or rows. However, the
singular values often decay fast, giving rise to a near low rank structure.

Another important variable is how much of the singular space is needed and how accurately.
Several applications require a small number (1-4) smallest or largest singular triplets to a good but
not high accuracy. Others require the computation of a low rank approximation of the entire matrix.
In these cases, low accuracy is sufficient, especially when the matrix itself is near low rank.

Given the size of the problems, one way to obtain a low rank approximation is to perform a
randomized projection of the matrix down to a more manageable dimensionality where we can
solve the SVD directly. The singular space approximations obtained by the randomized projection
can be improved iteratively by applying a basic subspace iteration. These techniques have proven
particularly efficient, requiring only 1-2 subspace iterations, and although the computed singular
vectors are not accurate, the low rank approximation is. This has puzzled numerical analysts and
only recently has research emerged that starts to explain the phenomenon.

In this talk, we examine the relative merits of these two classes of methods based on this recent
research and some new observations. First, we observe that traditional block iterative methods are
also randomized. Then we show that the difference between randomized and traditional iterative
methods is only in their stopping criteria. Specifically, the requirement for a good low rank ap-
proximation is a weaker condition that does not depend on the singular gaps or even the angles
between our approximations and the singular vectors. Therefore, a common framework is possible
with flexible stopping criteria and variable block size for different problems.
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Abstract
We consider computation of the matrix logarithm based on the integral representation

log(A) =

∫ 1

0
(A− I)[t(A− I) + I]−1 dt (1)

whereA is a square matrix whose eigenvalues do not lie on the closed negative real axis. The matrix
logarithm arises in many applications such as von Neumann entropy and image registration.

The efficiency of computing the matrix logarithm of (1) by numerical integration depends on
the choice of quadrature formula. The Gauss–Legendre quadrature is considered as one choice for
(1) (e.g. [1]), because the Gauss–Legendre quadrature for (1) coincides with Padé approximation
for log(A) (see, e.g. [2, p. 274]). However, when the condition number of A is large, the Gauss–
Legendre quadrature may not be the best choice.

In this talk, we consider the Double Exponential (DE) formula instead of Gauss–Legendre
quadrature. As compared with the Gauss–Legendre quadrature, the DE formula usually works well
even if integrands have endpoint singularities, and the DE formula improves accuracy at low cost
(without recalculating abscissas-weight pairs). On the other hand, since the DE formula changes
the integral interval into (−∞,∞), we need to estimate the truncation error and give a promising
finite interval for practical use. We propose an algorithm including the truncation error estimation,
and show some numerical results to confirm its efficiency.
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Abstract
The Greatest Common Divisor (GCD) of polynomials is needed in many real applications such as
Image Processing, Secret Sharing Schemes, Networks, Control Theory and has attracted the interest
of researchers for many years. The computation of the degree and the coefficients of the GCD of
polynomials is a hard task. Noise and measurement errors in initial data can lead to wrong results.
Thus, it is of interest the relaxation of the notion of the exact GCD and the computation of an
approximate GCD (AGCD) of polynomials. In this paper, we present methods for the computation
of the degree and the coefficients of the AGCD of several polynomials. The approaches of this work
are based on matrices of special structure such as Generalized Sylvester and Bezoutians. Classical
methods such as LU, QR and RRQR facrorization are used and appropriately modified in order to
be applied to the special form of the matrices reducing the required computational complexity of the
procedures. The error analysis of the methods guarantees the stability of the presented algorithms.
Many numerical experiments testing and comparing the methods conclude to useful remarks.
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Abstract
We consider different approaches to constructing of the two - level iterative procedures in the
Krylov subspace for a high-performance solution of the large systems of linear algebraic equations
(SLAEs) with non-symmetric, in general, sparse matrices which arise in finite element or finite vol-
ume methods (FEM or FVB) for approximation of the multi-dimensional boundary value problems
with real data on the non-structured grids, when implementating on the multi-processor computers
(MPC) with distributed and hierarchical shared memory. The parallel algorithms are based on the
additive domain decompostion methods (DDM) , with parametrized overlapping of subdomains
and various interface conditions at the internal bounda- ries, in the Krylov subspaces. At the upper
level, the block multi-preconditioned semi-conjugate direction methods (MP-SCD) are applied
which realize semi-conjugate gradient or residual (MP-SCG or MP-SCR) algorithms in particular
cases. These algorithms are equivalent, in a sense, to FOM and GMRES methods respectively. The
acceleration of the external iterative process is provided by means of the coarse grid correction, or
the deflation procedure, or the low - rank approximation of the original matrix, as well as by the
Sonneveld approaches. In the case of reduced recursions, the acceleration of restarted iterations is
attained by the least squares approaches, The simultaneous solutions of the auxiliary sub-systems
in subdomains at the low -level of the computational process are implemented by means of either
direct or iterative algorithms. The parallelization of the two - level iterative processes is based on
the hybrid programming using MPI and multi-thread technologies. The performance and efficiency
of the proposed algorithms, which are implemented in the library KRYLOV, are demonstrated on
the results of numerical experiments for a representative set of test problems.
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Abstract
This paper considers the computation of the greatest common divisor GCD of three polynomials,
f(y), g(y) and h(y), using the Sylvester resultant matrix and its subresultant matrices. It is shown
that there are two variations of the subresultant matrices for this problem, and that they have 2× 3
and 3× 3 partitioned structures. The order of the polynomials for the 2× 3 partitioned structure is
important because each ordering yields subresultant matrices of different dimensions. Furthermore,
the magnitudes of the entries of the matrices may differ significantly, and their numerical ranks are
not consistent. It is therefore necessary to consider the optimal sequence of the subresultant matri-
ces, and this issue is addressed. Also, it is shown that f(y), g(y) and h(y) must be preprocessed
before computations are performed on their Sylvester matrix and its subresultant matrices. Com-
putational examples are presented and the singular values of the 2 × 3 and 3 × 3 forms, and the
variation of the singular values between the different partitioned structures of the 2 × 3 forms, are
shown. It is also shown that it is important to include the preprocessing operations because it yields
an approximate GCD and coprime polynomials with much smaller errors than the errors obtained
when the preprocessing operations are omitted.
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Abstract
Discrete ill-posed problems arise in many areas of science and engineering. Their solutions, if they
exist, are very sensitive to perturbations in the data. Regularization aims to reduce this sensitivity.
Many regularization methods replace the original problem with a minimization problem with a
fidelity term and a regularization term. Recently, the use of a p-norm to measure the fidelity term and
a q-norm to measure the regularization term has received considerable attention, see, e.g., [2, 3, 4]
and references therein. The relative importance of these terms is determined by a regularization
parameter. When the perturbation in the available data is made up of impulse noise and a sparse
solution is desired, it is often beneficial to let 0 < p, q < 1. Then the p- and q-norms are not norms,
thus the minimized functional is non-convex. For the minimization of such non-convex functional
we resort to the algorithm proposed in [4].

The choice of a suitable regularization parameter is crucial for the quality of the computed so-
lution. It is therefore important to develop methods for determining this parameter automatically,
without user-interaction. In this talk we discuss two approaches based on cross validation for deter-
mining the regularization parameter in this situation. Computed examples that illustrate the perfor-
mance of these approaches when applied to the restoration of impulse noise contaminated images
are presented.
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Abstract
We consider a linear functional equation Ax = y where A : X −→ Y is an ill-posed operator
between two complete normed linear functional spacesX and Y . The variational approach involves
the minimization of a Tikhonov-type regularization functional Φα : X −→ R defined as

Φα(x) =
1

p
‖Ax− y‖pY + αR(x) ,

where p > 1, R : X −→ R is a convex penalty term which quantifies the “non-regularity” of x,
and α > 0 is the regularization parameter which balances between data fitting and stability.

In the simplest case, referred as (basic) Tikhonov regularization, both X and Y are Hilbert
spaces, p = 2 and R(x) = 1

2‖x‖2X . In the last two decades, several extensions to Banach space
settings have been proposed in the literature to reduce the over-smoothness effects of the basic
Hilbertian approach, also aimed at improving the sparsity, or at enforcing non-negativity or other
special constraints. We just mention some special weighted Lebesgue spaces Lp or Sobolev spaces
W k,p, with 1 < p < +∞ [4].

In this talk, we discuss a special Tikhonov-type functional Φα whose penalty term R is model-
dependent, that is,R explicitly depends on the operator A which characterizes the functional equa-
tion [3]. In addition, the functional is no longer convex as in the conventional setting, but in our
proposal is delta-convex; i.e., it is representable as a difference of two convex terms. We will show
that the proposed delta-convex functional allows us to speed up the convergence of iterative gradient
minimization algorithms. This acceleration technique, which we call as “irregularization”, is useful
for large scale equations arising in image restoration [1]. Then, an extension of the algorithm to the
unconventional variable exponent Lebesgue space Lp(·) [2] is also analyzed and numerically tested,
aimed at providing a pointwise and adaptive control of the level of regularization.
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Abstract
The solution of the penalized least squares problems depends on a tuning parameter. A popular tool
for specifying the tuning parameter is the generalized cross-validation (GCV). In this work, we are
concerned with the estimation and minimization of the GCV function by using a combination of
an extrapolation procedure and a statistical approach. We apply simulations for different statistical
designs and we report the Type I and Type II error rates in order to compare the behaviour of the
proposed method with the corresponding estimates of the tuning parameter which are obtained by
minimizing the exact GCV function. The Type I and Type II error rates are computed considering
the L1, the hard thresholding and the Smoothly Clipped Absolute Deviation penalty functions.
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Matlab implementation of a spectral
algorithm for the seriation problem
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Abstract
Seriation is an important ordering problem which consists of finding the best ordering of a set of
units whose interrelationship can be defined by a bipartite graph. It is frequently used in archaeol-
ogy and it has important applications in many fields such as anthropology, biology, bioinformatics,
genetics and psychology. We will present a Matlab implementation of an algorithm for spectral se-
riation by Atkins et al. [1], based on the use of the Fiedler vector of the Laplacian matrix associated
to the problem and which encodes the set of admissible solutions into a particular data structure
called PQ-tree.

We will discuss the case of the presence of a multiple Fiedler value which may have a substan-
tial influence on the computation of an approximate solution to the seriation problem and some
numerical examples for which is not possible to find an exact solution [2].
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Abstract
The decomposition of non-stationary signals is a problem of great interest from the theoretical point
of view and has important applications in many different fields. For instance, it occurs in the identi-
fication of hidden periodicities and trends in time series relative to natural phenomena (like average
troposphere temperature) and economic dynamics (like financial indices). Since standard techniques
like Fourier or Wavelet Transform are unable to properly capture non-stationary phenomena, in the
last years several ad hoc methods have been proposed in the literature. Such techniques provide
iterative procedures for decomposing a signal into a finite number of simple components, called In-
trinsic Mode Functions (IMFs). At this regard, we recall the well-known and widely used Empirical
Mode Decomposition (EMD), an algorithm conceived in 1998 by Huang and his research team at
NASA [1]. Since this strategy is empirical and lacks of theoretical foundations, recently the Iterative
Filtering (IF) method has been proposed [2]. IF is based on ideas similar to EMD, but unlike EMD
allows to make a mathematical analysis of method properties. In this talk we focus on investigating
the use of different Boundary Conditions (BCs) in IF, which give rise to different matrix structures.
The results presented are based on tools developed in the context of image restoration [3, 4]. Nu-
merical experiments show that a suitable choice of BCs is able to improve in a meaningful way the
quality of signal decomposition in IMFs computed by IF method.

References
[1] N. E. HUANG, Z. SHEN, S. R. LONG, M. C. WU, H. H. SHIH, Q. ZHENG, N.-C. YEN, C. C. TUNG, H.

H. LIU, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time
series analysis, Proceedings of Royal Society of London A 454, pp. 903–995 (1998).

[2] L. LIN, Y. WANG AND H. M. ZHOU, Iterative filtering as an alternative algorithm for empirical mode
decomposition, Advances in Adaptive Data Analysis 1, pp. 543–560 (2009).

[3] M. K. NG, R. H. CHAN AND W. C. TANG, A fast algorithm for deblurring models with Neumann boundary
conditions, SIAM J. Sci. Comput. 21, pp. 851–866 (1999).

[4] S. SERRA CAPIZZANO, A note on antireflective boundary conditions and fast deblurring models, SIAM J.
Sci. Comput. 25, pp. 1307–1325 (2003).

79



Parametrizations and prediction

Azzouz Dermoune1, Khalifa Es-Sebaiy2, Mohammed Es.Sebaiy3, Jabrane
Moustaaid4

1azzouz.dermoune@univ-lille1.fr
2k.essebaiy@uca.ma
3mohammedsebaiy@gmail.com
4jabrane.mst@gmail.com

Abstract
We consider the problem of climate change detection. The years taken into account and the annual
mean temperature are denoted by 0, . . . , n and t0, . . ., tn, respectively. We propose to predict the
temperature tn+1 using the data t0, . . ., tn. We construct a list of parametrizations (Θ(l) : l =
0, . . . , n + 1) of the Euclidean spaces (Rl+1 : l = 0, . . . , n + 1) adapted to the prediction of tn+1.
We analyse how the parametrization affects the prediction and also propose confidence interval
prediction without using any probabilistic model. We illustrate our results for the annual mean
temperature of France and Morocco.
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Abstract
The Sinc approximation is a highly-efficient approximation formula for analytic functions expressed
as

F (x) ≈
N∑

k=−M

F (kh) sinc(x/h− k), x ∈ (−∞,∞),

where sinc(x) = sin(πx)/(πx). This approximation gives exponential convergence if |F (x)| de-
cays exponentially as x→ ±∞. Here, we should also note that the target interval to be considered
is the infinite interval (−∞,∞), and accordingly F should be defined over the infinite interval. If
the function to be approximated decays exponentially but is defined over the semi-infinite interval
(0,∞), for example f(t) =

√
t e−t, Stenger [1] proposed to employ a conformal map

t = ψ(x) = arcsinh(ex),

by which the transformed function f(ψ(x)) is defined over (−∞,∞) and decays exponentially as
x → ±∞. However, conformal map performing such a role is not unique; if we employ another
conformal map, the convergence rate may be improved. In fact, in the area of numerical integration,
improvement of the convergence rate has been reported [2, 3] by replacing the conformal map
t = ψ(x) with

t = φ(x) = log(1 + ex).

Motivated by the fact, this study proposes to combine the Sinc approximation with t = φ(x) instead
of t = ψ(x). A computable error bound for the proposed approximation formula is also given.
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Abstract
ECG analysis is the main and the most studied noninvasive technique used for the contemporary
investigation of the functionality of the cardiovascular system. ECG parameters are effectively used
for the identification of various heart rate and conductivity defects, different heart hypertrophies and
ischemic processes. Cardiac time intervals are sensitive markers of cardiac dysfunction, even when
it goes unrecognized by conventional echocardiography [1]. Furthermore, interrelations between
ECG parameters is still an active area of research.

In this talk we present the concept of perfect matrices of Lagrange differences which are used
to investigate the relationships between two ECG parameters RR and JT intervals that are recorded
during the bicycle ergometry experiment. The concept of the perfect matrix of Lagrange differences,
its parameters, the construction of the load function and the corresponding optimization problem,
the introduction of internal and external smoothing, embedding of the scalar parameter time series
into the phase plane - all these computational techniques allow visualization of complex dynamical
processes taking place in the cardiovascular system during the load and the recovery processes.

The proposed technique allows to observe the ”collapse of complexity” at the end of the bicycle
stress test, temporary stabilization of transient attractors during the load, rich dynamical behavior
of the heart system during the recovery process.
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Abstract
The methods of data assimilation have become an important tool for analysis of complex physi-
cal phenomena in various fields of science and technology. These methods allow us to combine
mathematical models, data resulting from observations and a priori information. The problems of
variational data assimilation can be formulated as optimal control to find unknown model param-
eters such as initial and/or boundary conditions, right-hand sides in the model equations (forcing
terms), distributed coefficients, based on minimization of the cost function related to observations.
A necessary optimality condition reduces an optimal control problem to an optimality system which
involves the model equations, the adjoint problem, and input data functions

In this work the variational data assimilation problems in the Baltic Sea water area were for-
mulated and studied [1, 3]. We assume, that the unique function which is obtained by observation
data processing is the function of Sea Surface Temperature (SST) and we permit that the function
is known only on a part of considering area (for example, on a part of the Baltic Sea). Numerical
experiments on restoring the ocean heat flux and obtaining solution of the system (temperature,
salinity, velocity, and sea surface level) of the Baltic Sea primitive equation hydrodynamics model
[2] with assimilation procedure were carried out with the use of the data error covariance matrix.
The spatial resolution of the model grid with respect to the horizontal variables is 0.0625*0.03125
degree. The results of the numerical experiments are presented.

This study was supported by the Russian Foundation for Basic Research (project 16-01-00548)
and project 14-11-00609 by the Russian Science Foundation.
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Abstract
The problem of variational data assimilation for a nonlinear evolution model is formulated as an
optimal control problem to find the unknown parameters of the model. We study the problem
of sensitivity of the optimal solution via variational data assimilation with respect to observation
errors. On the basis of relations between the error of the optimal solution and the errors of obser-
vational data through the Hessian of the cost functional, the algorithms are developed and justified
for calculating the coefficients of sensitivity as the norms of the response operators occurring in the
equations for errors. A numerical study of the sensitivity of the optimal solution on the example
of the problem of variational data assimilation of sea surface temperature to restore the heat flows
for the model of thermodynamics is presented. Numerical examples for data assimilation in the
Baltic Sea dynamics model are given. This work was carried out within the Russian Science Foun-
dation project 14-11-00609 (numerical experiments) and the project 18-01-00267 of the Russian
Foundation for the Basic Research.
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Abstract
Development of Informational Computational Systems (ICS) for data assimilation procedures is one
of multidisciplinary problems. To study and solve these problems one needs to apply modern results
from different disciplines and recent developments in mathematical modeling, theory of adjoint
equations and optimal control, inverse problems, numerical methods theory, numerical algebra,
scientific computing and processing of satellite data.

In this work the results on the ICS development are presented. We discuss practical problems
studied by ICS “INM RAS Baltic Sea“. The System includes numerical model of the Baltic
Sea thermodynamics, the oil spill model describing the propagation of a slick at the Sea surface
(Agoshkov, Aseev et al., 2014) and the optimal ship route calculating block (Agoshkov, Zay-
achkovsky et al., 2014). The ICS is based on the INMOM numerical model of the Baltic Sea
thermodynamics (Zalesny et al., 2013). It is possible to calculate main hydrodynamic parameters
(temperature, salinity, velocities, sea level) using user-friendly interface of the ICS. The System
includes data assimilation procedures (Agoshkov, Parmuzin et al., 2015) and one can use the block
of variation assimilation of the sea surface temperature in order to obtain main hydrodynamic pa-
rameters. Main possibilities of the ICS and several numerical experiments are presented in the
work.

The study was supported by the Russian Science Foundation (project 14-11-00609).
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tonian systems

Cristina Anton1

1Department of Mathematics and Statistics, Grant MacEwan University, Edmonton, AB T5J 4S2, Canada

Abstract
Consider the stochastic autonomous Hamiltonian system in the sense of Stratonovich

dP i
t = −∂H0

∂Qi
t

dt−
d∑

r=1

∂Hr

∂Qi
t

◦ dwr
t , dQi

t =
∂H0

∂P i
t

dt+
d∑

r=1

∂Hr

∂P i
t

◦ dwr
t , (1)

where P0 = p, Q0 = q, P , Q, p, q are n-dimensional column vectors, and wr
t , r = 1, . . . , n are

independent standard Wiener processes. The flow φt(p, q) = (Pt(p, q), Qt(p, q))
T of (1) preserves

the symplectic structure [3]:
(
∂φt
∂y0

)T

J

(
∂φt
∂y0

)
= J, J =

[
0 I
−I 0

]
, y0 = (p, q)T . (2)

Numerical simulations over a long time interval show that symplectic numerical schemes give
more accurate approximations for the solutions of stochastic Hamiltonian systems [3]. Several
strong and weak symplectic schemes were proposed [3], [1], but unless we consider special stochas-
tic Hamiltonian systems, symplectic schemes are implicit [3]. However, particularly in large Monte
Carlo simulations, explicit schemes are desirable in terms of computing time.

For stochastic Hamiltonian systems with additive noise, explicit pseudo- symplectic methods are
constructed in [4], and they show good performance for long time computations. In [4] a pseudo-
symplectic numerical method y1 = Φh(y0), with time step h, of mean-square order (M,N), N >
M is defined as a method of mean square order M that satisfies


E

∥∥∥∥∥

(
∂Φh

∂y0

)T

J

(
∂Φh

∂y0

)
− J

∥∥∥∥∥

2



1/2

= O(hN+1). (3)

We extend the approach used in the deterministic case [2], and we construct explicit pseudo
symplectic schemes in the strong and weak sense for the general stochastic Hamiltonian system (1).
We illustrate the properties of these methods thorough several numerical experiments.
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Abstract
This work investigates a linear model that involves integral equations of the first kind defined on the
positive semiaxes used to describe the interaction of an electromagnetic field with the soil [3]. The
aim is to detect, by non destructive investigation of soil properties, inhomogeneities in the ground
as well as the presence of particular conductive substances.

To find the solution of the problem, we propose different numerical methods based on splines,
Bernstein polynomials or Laguerre orthogonal polynomials combined with some suitable regular-
ization techniques as the Truncated Singular Value Decomposition and Tikhonov regularization
[1, 2].

Finally, we compare the results obtained by each method mentioned above on synthetic data sets.
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Abstract
This contribution deals with a notched half plane problem of two-dimensional elasticity theory,
which considers a straight crack of normalized length 2 perpendicular to and ending at the boundary
of the elastic half plane. The problem can be modelled by a hypersingular integral equation, the
solution of which is the crack opening displacement. For the numerical solution of this equation
we propose polynomial collocation-quadrature methods, which look for an approximation of the
derivative of the crack opening displacement. This derivative is the solution of a Cauchy singular
integral equation with additional fixed singularities, which is given by the equation

1

π

∫ 1

−1

[
1

y − x + h

(
1 + x

1 + y

)
1

1 + y

]
v′(y) dy = f(x) , x ∈ (−1, 1) ,

where the right hand side f : [−1, 1] −→ C is smooth and where

h(t) = − 1

1 + t
+

6t

(1 + t)2
− 4t2

(1 + t)3
.

By using C*-algebra techniques as well as results from a previous work [1], we present necessary
and sufficient conditions for the stability of the collocation-quadrature methods as well as numerical
results. In contrast to former works (cf. [1] and [2]) our results are based on a new approach, which
takes into account the “natural” asymptotic of the solution at the endpoints of the integration interval
and for which until now no criterion for stability is known.
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Abstract
In many applications a PDE has to be solved on a domain that allows the use of the method of
separation of variables. In several coordinate systems this leads to two- or three-parameter eigen-
value problems (2EP or 3EP), an example is the Helmholtz equation in ellipsoidal and paraboloidal
coordinates. While there exist several subspace methods for 2EP, extensions to 3EP are not straight-
forward. We propose two subspace methods for 3EP, a subspace iteration with Arnoldi expansion
and a Jacobi–Davidson type method, which we generalize from their 2-parameter counterpart and
add important new features. Methods are implemented in the Matlab toolbox MultiParEig [1].

In the generic case, separation of variables applied to a separable boundary value problem, fol-
lowed by a discretization, leads to a multiparameter eigenvalue problem of the form

Ai0 xi =

k∑

j=1

λj Aij xi, i = 1, . . . , k, (1)

where k ∈ {2, 3} and Aij ∈ Cni×ni for i = 1, . . . , k and j = 0, . . . , k. A k-tuple (λ1, . . . , λk) is
an eigenvalue if it satisfies (1) for nonzero vectors x1, . . . , xk and the corresponding eigenvector is
x1 ⊗ · · · ⊗ xk. By introducing the so-called k × k operator determinants

∆0 =

∣∣∣∣∣∣∣

A11 · · · A1k
...

...
Ak1 · · · Akk

∣∣∣∣∣∣∣
⊗

and ∆i =

∣∣∣∣∣∣∣

A11 · · · A1,i−1 A10 A1,i+1 · · · A1k
...

...
...

...
Ak1 · · · Ak,i−1 Ak0 Ak,i+1 · · · Akk

∣∣∣∣∣∣∣
⊗

for i = 1, . . . , k, where the Kronecker product ⊗ is used instead of multiplication, we get matrices
∆0, . . . ,∆k of order n1 · · ·nk. If ∆0 is nonsingular, then ∆−1

0 ∆1, . . . ,∆
−1
0 ∆k commute and (1)

is equivalent to a system of generalized eigenvalue problems ∆iz = λi∆0z, i = 1, . . . , k, where
z = x1 ⊗ · · · ⊗ xk. This relation enables us to compute all eigenvalues of (1) if the ∆-matrices are
small. However, usually even for k = 2 the ∆-matrices are so large that it is not efficient or even
not feasible to compute all the eigenvalues.

In many applications we need only the smallest eigenvalues of ∆kz = µ∆0z. For k = 2
we can efficiently apply the Krylov subspace methods since we can exploit the structure of ∆2 to
reduce the complexity of solving a system with ∆2 from O(n31n

3
2) to O(n31 + n32). For k = 3 it

remains open how to reduce the complexity of solving a system with ∆3 below O(n31n
3
2n

3
3). The

new methods for 3EP overcome this obstacle and we will show how they can be used to compute
accurate eigenfunctions for the ellipsoidal wave equations and Baer wave equations efficiently.
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Abstract
Matrix partial orders are a useful tool in several research areas. In [1] the authors show that, for
two matrices A and B of the same size, A ≤ B implies that B can be seen as a perturbation of
A for the most common matrix partial orders. We apply this theory in control linear systems [2].
Specifically, we compare two control linear systems whose state matrices are related under the sharp
partial order. It should be interesting to have a relationship between the solutions of both systems.
In this work we present this relation by finding that the difference between both solutions is given by
the perturbation between the involved state matrices. Moreover, an upper bound for this difference
is found.
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Abstract
We consider the continuous time descriptor systemEẋ (t) = Ax (t)+Bu (t), denoted by (E,A,B),
with E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×m, x ∈ Rn, u ∈ Rm and t ≥ 0 representing time. A
fundamental concept associated with descriptor systems is that of controllability. Intuitively, this is
the ability of x to move from an initial to a final value in finite time by some control action u (t).
If E is allowed to be singular, x is restricted to the so-called reachable subspace R ⊆ Rn. This
gives rise to the concept of controllability within R, termed R-controllability, and to the concept
of the distance of (E,A,B) from the nearest R-uncontrollable system, also termed the radius of
(E,A,B).

In this work we concentrate on a special kind of a descriptor system termed the semiexplicit
system (J,A,B), where J = diag (I, 0). Often, descriptor systems appear naturally in this form,
but also any system (E,A,B) is equivalent to some semiexplicit system via an equivalence relation
(J,A,B) ≡ diag

(
Σ−1, I

)
QT (E,A,B) diag (P, P, I), using for example the singular value de-

composition QTEP = diag (Σ, 0) of E. The radius µ of (J,A,B), can be defined, and be shown
equal to:

µ ≡ min
(δA,δB)∈Cn×(n+m)

‖(δA, δB)‖2 : (J,A+ δA,B + δB) isR-uncontrollable

= min
λ∈C

σmin (B,A− λJ)︸ ︷︷ ︸
σ(λ)

, where σmin denotes the smallest singular value.

The contribution of this research is the efficient estimation of µ without resorting to algorithms
that estimate the radius of a general descriptor system since they all consider, as they should, per-
turbations on E and consequently give rise to algorithms that are unnecessarily complicated for
semiexplicit systems. Furthermore some of them do not allow E to be singular. On the other hand,
with the exception of one paper, which will be discussed, none of the papers that estimate the radius
of (I, A,B) can be altered, at least in a straightforward way, in order to handle (J,A,B), where J
is allowed to be singular.

The study of σ (λ) shows that it possesses several local minima clustered in a specified area.
To address this, we developed a novel algorithm for the computation of the global minimum of
σ (λ), which we termed the feedback search algorithm. We have implemented this algorithm in
MATLAB and applied it successfully on σ (λ) and on two other related functions using several
random examples as well as examples from the literature.
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Abstract
For two given integers k = 1, 2, . . . , m = 0, 1, . . . , and the nonnegative real constants c1, c2, . . . , ck,
the n-th term, fn of the generalized k,m-step Fibonacci sequence is given by the recursive formula

fn = c1fn−m−1 + c2fn−m−2 + · · ·+ ckfn−m−k

=

k+m∑

j=m+1

cj−mfn−j , for every n ≥ k +m+ 1, (1)

with

f1 = f2 = . . . = fk+m = 1.

Using (1) the generalized k,m-step Fibonacci sequence can be represented by the generalized k,m-
Fibonacci matrices, which are defined in [1] and some bounds for the spectral radius of the matrices
are discussed. In this paper, the powers of the generalized k,m-step Fibonacci matrices are investi-
gated and closed formulas for their entries are derived, related to the suitable terms of the k,m-step
Fibonacci sequences in order to develop the properties of the irreducibility and primitivity of the
Fibonacci matrices. New upper and lower bounds for the spectral radius and the modulus of the re-
maining eigenvalues of the generalized k,m-Fibonacci matrices are presented. Some known results
for the nonnegative matrices in the literature are generalized and improved, [2, 3, 4, 5]. Applications
of the results are given in the tridiagonal k-Toeplitz matrices.
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Abstract
Hadamard matrices have many applications in several mathematical areas due to their special form
and the numerous properties that characterize them [2, 4]. Based on a recently developed relation
between minors of Hadamard matrices [5] and using tools from calculus and elementary num-
ber theory, the present work highlights a direct way to investigate the conditions under which an
Hadamard matrix of order n − k can or cannot be embedded in an Hadamard matrix of order n.
In this study, we analyzed the embedding properties of Hadamard matrices via their minors and
revisited the method of proving Hn−k /∈ Hn when k < n

2 , which was originally presented in [1].
A systematic approach was followed to this problem, first by looking at the cases Hn−4 /∈ Hn and
Hn−8 /∈ Hn, and then, considering the general case Hn−k /∈ Hn. The results obtained allowed us
to study the problem further when k ≥ n

2 , which may reveal a characteristic embedding pattern for
all Hadamard matrices. In particular, for k = n

2 it is known that Hk ∈ H2k and for k > n
2 we infer

that a Hadamard matrix of order n − k may exist embedded in a Hadamard matrix of order n, that
is Hn−k ∈ Hn, if the Hadamard matrix of order n has a k× k submatrix with minor p 2k−1 and the
value of p is specifically given by the function:

p := P(n, k) = 2
(n
4

) k
2

(
n− k
n

)n−k
2

for
n

2
≤ k < n and

{
n = 8, 12, 16, . . .
k = 4, 8, 12, . . .

The results obtained also provide answers to the problem of determining the values of the spectrum
of the determinant function [3] for specific orders of minors of Hadamard matrices.
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Abstract
This paper is to give the relation between the derivatives of split-quaternion valued functions in S
and the corresponding functions of four real variables in R4, in order to obtain a quaternion exten-
sion of the HR calculus termed the SR calculus. Due to non-commutativity of split-quaternion
product, we induces the SR calculus as the left- and right-hand versions of derivatives of split-
quaternionic functions. In particular, we show that for real functions of split-quaternion variables
the left and right SR derivatives are identical. That is, the use of the left/right SR derivative does
not affect to practical applications of (split-)quaternion optimization. Finally, we consider several
fundamental theorems in (split-)quaternion calculus, based on the SR derivatives to enable expan-
sion to (split-)quaternions in practical applications.
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Abstract
The eigenvalues of a Wishart random matrix and its trace have long been used in multivariate sta-
tistical analysis for a variety of analyses and applications [4]. This class was recently generalized
to any β > 0 to obtain the class of Beta–Wishart matrices of which the classical real, complex, and
quaternion cases correspond to β = 1, 2, and 4, respectively [1, 2].

The only known expressions for the eigenvalues and the trace, however, are in terms of infinite
series of Jack functions, and in particular, the hypergeometric function of a matrix argument. These
series are notoriously slow to converge and have been a computational challenge for decades despite
recent progress [3]. The main issue is the exponential number of terms in (a finite truncation of) the
expansion of hypergeometric function as a series of Jack functions.

We will present new expressions and a new algorithm for computing the density and distribution
of the trace of a Beta–Wishart matrix which is linear in both the size of the matrix and the degree
of the truncation. This complexity is optimal. Additionally, our new algorithm is subtraction-free,
which means that the results will be computed to high relative accuracy in the presence of roundoff
errors in floating point arithmetic.

Additionally, we will present new results that allow the computation of the density of the largest
eigenvalue of a Beta–Wishart matrix order of magnitude faster than previous results.
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Abstract
In previous papers, the authors introduced and characterized a kind of matrices called {K, s + 1}-
potent [1, 2]. Also, they established a method to calculate these matrices. Some related class of
matrices were studied in [3, 4]. The purpose of the present paper is to solve the associated inverse
problem. Several algorithms are developed in order to find all involutory matrices K satisfying
KAs+1K = A for a given matrix A ∈ Cn×n and a given natural number s. The cases s = 0 and
s ≥ 1 are separately studied since they produce different situations. In addition, some examples are
presented showing the numerical performance of the methods.
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Abstract
The two nonlinear matrix equationsXp = A+MT (X−1#B)−1M andXp = A±MT (X−1#B)−1M
are studied, where p ≥ 1 is a positive integer, M is an n × n nonsingular matrix, A is a positive
semidefinite matrix and B is a positive definite matrix. We call C#D the geometric mean of pos-
itive definite matrices C and D. We show the existence and uniqueness of the nonlinear matrix
equations. Estimates of the positive definite solution are given. Iteration method for finding the
numerical solution is proposed.
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Abstract
New localization results for polynomial eigenvalue problems are obtained, by extending the no-
tions of the Gershgorin set, the generalized Gershgorin set (known also as the A-Ostrowski set), the
Brauer set, and the Dashnic-Zusmanovich set, to the case of matrix polynomials. For each eigen-
values’ inclusion set, basic topological and geometrical properties are presented, and illustrative
examples are given.
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Abstract
In this work the scattering problem of time-harmonic electromagnetic waves from a two-layered
obstacle consisting of a triaxial dielectric ellipsoid with a confocal perfectly conducting ellipsoidal
core is considered. A low-frequency formulation of the direct scattering problem is described.
Based on near-field or far-field data, a measurement matrix is constructed whose eigenvalues and
eigenvectors contain information for the size and the orientation of the ellipsoid. The geometri-
cal method described can be applied for solving inverse electromagnetic scattering problems for
spheroids, spheres, needle and discs, considering them as geometrically degenerate forms of the
ellipsoid for suitable values of the physical and geometrical parameters.
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Abstract
There are a lot of approaches to the formulation of domain decomposition method. However, some
problems connected with the theory and application of domain decomposition method are to be
mentioned. The majority of known approaches uses symmetric operators. It may provide simplifi-
cation of domain decomposition method but it is not acceptable for oceans and seas hydrothermo-
dynamics.

New methodology for constructing the domain decomposition algorithms is based on the theory
of optimal control, the results of the theory of inverse and ill-posed problems, the application of
adjoint equations and modern iterative processes. Domain is divided into subdomains. To solve
subproblems in each subdomain interface conditions are to be set. Some of them become “controls”
and are to be found with the solution in subdomains. The second part of interface conditions is
written as additional equation to solve the system in terms of least squares. Thus optimal control
problem is obtained and it could be solved with the application of known methods. It should be
noted that this methodology is applicable to problems with operators of different types, orders and
with a different number of independent variables. The work is based on [1].

Domain decomposition method for the Baltic Sea model is numerically studied. The numerical
experiments with using and without domain decomposition algorithm are presented and discussed.

The work was supported by the Russian Science Foundation (project 14–11–00609).
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Abstract
The inverse source problems for nonlinear advection-diffusion-reaction models with image-type
measurement data are considered. These inverse problems arise in the air quality studies when the
measurement data is obtained in the form of time series, vertical concentration profiles or satellite
images of concentration fields. The data is of large amount and of different value with respect to
the considered inverse problem. The sensitivity operators constructed from the set of the adjoint
problem solutions allow us to transform the inverse problem stated as the system of nonlinear ODE
or PDE to the family of nonlinear operator equations depending on the given set of orthogonal
functions in the space of the measurement results [1]. By the choice of the orthogonal functions
the dimensionality of the problem can be reduced thus allowing for the efficient solution of the
resulting operator equation with the relevant methods for nonlinear ill-posed operator equations. We
consider Newton-Kantorovich type methods based on the truncated SVD. The operator form of the
inverse problem can be exploited for the analysis and comparison of the different inverse problem
statements, e.g. with the help of the spectral methods. For numerical solution, the discrete-analytical
schemes for transport and transformation processes are applied. The schemes are constructed with
the use of the locally-adjoint problems [2]. Multidimensional problems are treated according to the
splitting technique with respect to spatial dimensions and physical processes. The accuracy of the
sensitivity operator calculation is assured by the consistency of the numerical schemes for the direct
and adjoint problems in the sense of Lagrange-type identities [3]. The numerical methods are tested
on the atmospheric chemistry models.

The work has been supported by the RSF grant 17-71-10184.
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Abstract
In this work the scattering problem of time-harmonic thermoelastic waves from an ellipsoidal obsta-
cle is considered. The direct scattering problem using low-frequency approximation is formulated.
We study a new method using near-field data for solving the corresponding inverse scattering prob-
lem determining the size and the orientation of the ellipsoid. A finite number of measurements of
the leading order terms of the scattered field in the low-frequency approximation leads to specify
the semi-axes of the ellipsoid. The orientation of the ellipsoid is obtained by using a rotation matrix
whose elements are in terms of the Euler angles. Corresponding results for geometrically degener-
ate cases of the ellipsoid such as spheroids, spheres, needles and discs are obtained for appropriate
values of the physical and geometrical parameters.
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Abstract
This paper is divided into two parts. In the first one, we elaborate a stochastic algorithm based
on the brunch and bound method to minimize objective functions expressed by the expextation
of a partially lipschitzian function. The second part deals with the optimization of a semi lower-
continuous function. We show how to transform the objective function in order to obtain a situation
identical to the one of the first section.
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Abstract
The aim of feature selection is to identify the most informative and relevant features for a compact
and accurate data representation. Generally speaking, feature selection algorithms were handled
in supervised and unsupervised learning contexts. However, the semi-supervised context is more
realistic where we might have only few labeled data and many others unlabeled. In this regard,
another form of supervision information is available, it is based on simple pairwise comparisons
[1, 2] and can be more easily obtained compared to class labels. For instance, a data pair is said to
be a ”must-link constraint” if its data points are similar and a ”cannot-link constraint” otherwise.
Recently, there was a big interest in constrained clustering that handled choosing the constraints
actively and systematically, however, only few worked similarly for feature selection. Unexpectedly,
[4] stated that randomly chosen constraint sets can degrade the learning performance.
Therefore, we first suggested a margin-based algorithm, Relief-Sc, for weighting features according
to their data discrimination ability. It is said to find a unique relevant feature subset in a closed-form.
For that, we modified ReliefF algorithm to adapt the use of cannot-link constraints with the margin
concept used in [3]. We also propose to use the systematic way used by [5] to find the points that our
feature selection approach might be most uncertain about, and then actively query for constraints
upon these particular points. Since we can only query the oracle or expert for few constraints, we
finally suggest to extend our algorithm to make use of the unlabeled data together with the chosen
set of constraints. In order to validate our proposed algorithm, experiments are achieved on multiple
UCI machine learning datasets and the results are prominent.
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Abstract
Rational approximation in the form of a partial fraction expansion is especially well-suited to the
computation of functions of structured matrices, when such matrices can be inverted cheaply. Here
we focus on the inverse of the φ1 function

ψ1(z) = φ1(z)
−1 =

z

ez − 1

which is involved in the solution of certain linear differential equations.
We introduce a family of mixed polynomial-rational approximations of ψ1(z) with the goal of
• computing solutions of the differential problems mentioned above, in the form ψ1(A)g, where
A is a quasiseparable matrix and g a vector,

• reconstructing the matrix ψ1(A).
Numerical experiments illustrate the behavior and the benefits of such an approach.
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Abstract
LetD be a domain andH ⊂ D. LetD1, D2 ⊂ D be such thatD−H = D1∪D2 andD1∩D2 = P,
being P a non-connected curve. Let us suppose that, for i = 1, 2, we have C1-functions fi defined
in Di in such way that the piecewise function f defined as fi(x, y) if (x, y) ∈ Di is just continuous
along the curve P , i. e., P is an ‘edge’ in the graphic of f which is unknown inside the hole of the
graphic of f over H . In this work we propose a method to construct another function sf , defined in
the whole D, in such a way that:
i) P is reconstructed inside H;
ii) sf approximates f in D −H;
iii) sf interpolates f in a set of points of P ;
iv) sf extends the ‘shape’ of f from D −H to H by respecting the edge P .

That is, sf is a reconstruction of f which respects the ‘edge’ of its graphic over P and extends
it to H . We give the basic theoretical results and we show some graphical examples to illustrate the
proposed method.
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[1] D. Barrera, M. A. Fortes, P. González and M. Pasadas, Filling polygonal holes with minimal energy surfaces

on Powell-Sabin type triangulations, Journal of Computational and Applied Mathematics 234 (2010), 1058–
1068.

[2] C. K. Chui and M-J. Lai , Filling polygonal holes using C1-cubic triangular patches, Computer Aided
Geometric Design 17 (2000), 297–307.
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Abstract
A very well-known example known as Runge Phenomenon published by C. Runge in 1901 is as
follows: polynomial interpolation of a function f , using equidistant interpolation points on [−1, 1]
could diverge on certain parts of this interval even if f is analytic anywhere on the interval. Among
all the techniques that have been proposed to defeat this phenomenon in the literature of approxi-
mation theory, there is the mock-Chebyshev interpolation on a grid: a subset of (n+1) points from
an equispaced grid with O(n2) points chosen to mimic the non-uniform (n+ 1)-point Chebyshev-
Lobatto grid [1].

This study suggests a fast algorithm for computing the mock-Chebysev nodes using the distance
between each of the two consecutive points. The complexity of the algorithm isO(n), where n+1 is
the number of the Chebyshev nodes on the interval [−1, 1]. A discussion of bivariate generalization
of the mock-Chebyshev nodes to the Padua interpolation points in [−1, 1]2 is given and numerical
results are also provided.
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Abstract
Let µ be a finite positive measure defined on the Borelian σ-algebra of C, µ is absolutely con-
tinuous with respect to the Lebesgue measure dθ on [−π,+π]. Let us consider {Ln(z)}n∈N, the
system of monic orthogonal polynomial with respect to µ. We introduce a new class of polynomials
{Qn(z)}n∈N, that we call polar polynomials associated to {Ln(z)}n∈N.

We aim studying this polar orthogonal polynomials on the unit circle with respect to µ. We
speaking the asymptotic behavior of polar orthogonal polynomials on the unit circle with respect to
µ.
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Abstract
We are interested in fast and stable iterative regularization methods for image deblurring problems
with space invariant blur. The associated coefficient matrix has a Block Toeplitz Toeplitz Blocks
(BTTB) like structure depending on the boundary conditions imposed on the imaging model. In
the literature, several strategies have been proposed in the attempt to define proper preconditioner
for iterative regularization methods that involve such linear systems. Usually, the structure of the
preconditioner is chosen Block Circulant with Circulant Blocks (BCCB) because it can be efficiently
exploited by Fast Fourier Transform (FFT). Nevertheless, for ill-conditioned problems, it is well
known that BCCB preconditioners cannot provide a strong clustering of the eigenvalues. Moreover,
in order to get an effective preconditioner, it is crucial to preserve the structure of the coefficient
matrix. On the other hand, thresholding iterative methods are recently successfully applied to image
deblurring problems, exploiting the sparsity of the image in a proper wavelet domain.

Motivated by the results of recent papers [2, 3], we combine a nonstationary preconditioned
iteration [1] with the modified linearized Bregman algorithm (MLBA) and proper regularization
operators. Namely, the proposed algorithms are made of an outer step of a nonstationary Landweber
iteration, preconditioned by a Tikhonov-type preconditioner, and an inner step of thresholding.
The first one Tikhonov-type preconditioner is chosen as a matrix function of the corresponding
BCCB approximation of the original square matrix operator, obtained imposing the proper boundary
conditions that arise from the problem itself. The second one is chosen as a regularized version of
the BCCB approximation but preserving the structure of the original square matrix operator. We
prove that all the algorithms are regularizing and convergent, both in the free-noise case and in the
noise case. Finally, several numerical experiments shows the consistency of our methods in terms
of speed and quality of the restorations.
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Abstract
In numerical analysis and in applied mathematics one has often to deal with sequences which con-
verge slowly to their limit. Extrapolation methods can be used to accelerate the convergence of a
slow converging sequence or even to sum up divergent series.

In the first part of the presentation, we will revise Wynn’s ε-algorithm and the particular rules for
treating isolated singularities, i.e. when two or more consecutive elements are equal or almost equal,
and the more general particular rules proposed by Cordellier for treating non-isolated singularities,
i.e. when more than two elements are equal. A new implementation of the generalized particular
rules covering all the cases, namely singularities caused by two or more elements that are equal or
almost equal, makes the algorithm more efficient.

The second part of the presentation will be devoted to applications of vector extrapolation in
imaging problems. In particular, we will use the simplified topological ε-algorithm, introduced
by Brezinski and Redivo-Zaglia, in order to extrapolate a sequence generated by some iterative
regularization methods, commonly used for solving linear inverse problems, and we study the gain
of applying extrapolation on these methods in image reconstruction and restoration problems. The
numerical results illustrate the good performance of the accelerated methods compared to their
unaccelerated versions and other methods.
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Abstract
Total variation regularisation is an important tool to solve inverse imaging problems. In particu-
lar, in the last decades, in the literature, there have been introduced many different approaches and
algorithms for minimizing the total variation. These standard techniques are iterative-sequentially
formulated and therefore not able to solve large scale simulations in acceptable computational time.
For such large problems we need to address methods that allow us to reduce the problem to a
finite sequence of subproblems of a more manageable size, perhaps computed by one of the stan-
dard techniques. With this aim, we introduce domain decomposition methods for total variation
minimization. The main idea of domain decomposition is to split the space of the initial prob-
lem into several smaller subspaces. By restricting the function to be minimized to the subspaces,
a sequence of local problems, which may be solved easier and faster than the original problem,
is constituted. Then the solution of the initial problem is obtained via the solutions of the local
subproblems by glueing them together. In the case of domain decomposition for the non-smooth
and non-additive total variation the crucial difficulty is the correct treatment of the interfaces of the
domain decomposition patches. Due to the non-smoothness and non-additivity, one encounters ad-
ditional difficulties in showing convergence of more general subspace correction strategies to global
minimizers. In particular there do exist counterexamples indicating failure of splitting techniques,
see e.g. [1]. Nevertheless, in this talk we propose overlapping domain decomposition algorithms
for the total variation minimization problem with the guarantee of convergence to a minimizer of
the original functional [2]. The analysis is based on the relation between the primal (original) total
variation minimization problem and its dual formulation. To the best of our knowledge, this is the
first successful approach of a domain decomposition strategy for total variation minimization with a
rigorous convergent analysis in an infinite dimensional setting. We provide numerical experiments,
showing the successful application of the algorithms.
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Image enhancement of 4 dimensional
biomedical images with regularization.

Viktoria Taroudaki1

1Department of Mathematics
Eastern Washington University
306 Kingston Hall
Cheney, WA, 99004

Abstract
It is well known that biomedical images that are used to diagnose tumors, injuries, and other defects
in our bodies are optimal if they are free of blur and noise. That increases the confidence of the
accuracy of the diagnosis and the use of the correct treatment. Biomedical Images however are
susceptible to blur from the recording medical equipment and the motion of the patient as well as
noise. As the equipment, for example the MRI scanners develop, the blurring changes but for each
machine the blur can be estimated using phantoms and so it is important to keep studying them and
finding more effective and efficient algorithms for image deblurring that work fast. Deblurring of
the signals in addition to denoising is therefore essential for the efficient use of the signals in related
applications. In our work, we apply a statistical Optimal Filtering method uses the Singular Value
Decomposition of a first estimate of the blurring matrix and statistics to quantify uncertainty and to
deblur the signal in an efficient and effective way. The method was originally developed for two
dimensional images and is modified to be applied to higher dimensional signals. In this talk, we
will present the method and discuss its effectiveness using a brain MR image.
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Information-Based Model Reduction for
Nonlinear Electro-Quasistatic Field Problems

Fotios Kasolis, Markus Clemens
Chair of Electromagnetic Theory, University of Wuppertal, Rainer-Gruenter-Straße 21, 42119 Wuppertal, Germany

Abstract
We suggest a model reduction framework for transient nonlinear electro-quasistatic (EQS) field
simulations of high-voltage devices that comprise strongly nonlinear electric field stress grading
material. High-fidelity snapshots are obtained with the finite element method (FEM) along with im-
plicit time quadrature (BDF1). The singular value decomposition (SVD) is employed to obtain the
proper orthogonal decomposition (POD) modes [1], whilst nodes at which interpolation constraints
are imposed, are selected according to absolute and relative information criteria.

Since strongly nonlinear behavior is essentially irreducible, the developed so-called maximal
information refinement (MIR) strategy incorporates the indices of high-information content nodes
into the interpolation index set. More precisely, at each node of the computational domain, we as-
sign the spectral Shannon entropy [2] and the spectral Kullback-Leibler divergence [3], [4] of the
electric potential. These quantities, viewed as local complexity gauges, are used as node selection
criteria for interpolating nonlinear functions, given that they introduce nodes that preserve a max-
imum amount of information. Further, to limit the growth of the interpolation error, the resulting
MIR-generated index set is complemented with indices that are selected with a greedy approach,
similar to the one used as part of the discrete empirical interpolation method [5]. Our numerical
investigations validated the performance of the MIR method in terms of improved accuracy, and
without overloading the offline stage of the model reduction framework. We believe that the same
information-theoretic / time series analysis approach requires more attention, since it exploits the
high-fidelity snapshots and hence, it can be beneficial even for problems with strong nonlinearities
that are distributed in a large part of the computational domain.
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Sampling-free parametric model reduction of
structured systems

C. Beattie1, S. Gugercin1, Z. Tomljanović2

1Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, USA, {beattie, gugercin}@vt.edu
2Department of Mathematics, University J.J. Strossmayer in Osijek, Osijek, Croatia, ztomljan@mathos.hr

Abstract
We consider a parametric linear time invariant dynamical systems represented as

Eẋ(t) = A(p)x(t) +Bu(t),

y(t) = Cx(t),

where E,A(p) ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n. We assume that A(p) depends on k � n
parameters p = (p1, p2, . . . , pk) such that A(p) = A0 + U diag(p1, p2, . . . ,pk)V

T, where U, V ∈
Rn×k are given fixed matrices. Here x(t) ∈ Rn denotes the state variable, while u(t) ∈ Rm and
y(t) ∈ Rl represent, respectively, the inputs and outputs of the system.

We propose an approach for approximating the full-order transfer function H(s; p) = C(sE −
A(p))−1B with a reduced-order model that retains the structure of parametric dependence and (typ-
ically) offers uniformly high fidelity across the full parameter range. Remarkably, the proposed
reduction process removes the need for parameter sampling and thus does not depend on identi-
fying particular parameter values of interest. In our approach the Sherman-Morrison-Woodbury
formula allows us to construct a parameterized reduced order model from transfer functions of four
subsystems that do not depend on parameters. In this form one can apply well-established model
reduction techniques for non-parametric systems. The overall process is well suited for computa-
tionally efficient parameter optimization and the study of important system properties.

One of the main applications of our approach is for damping optimization: we consider a vibra-
tional system described by

Mq̈(t) + (Cint + Cext)q̇(t) +Kq(t) = Ew(t),
z(t) = Hq(t),

where the mass matrix,M , and stiffness matrix,K, are real, symmetric positive-definite matrices of
order n. Here, q(t) is a vector of displacements and rotations, whilew(t) and z(t) represent, respec-
tively, the inputs (typically viewed as potentially disruptive) and outputs of the system. Damping
in the structure is modeled as viscous damping determined by Cint + Cext where Cint and Cext

represent contributions from internal and external damping, respectively. Information regarding
damper geometry and positioning as well as the corresponding damping viscosities are encoded in
Cext = Udiag(p1, p2, . . . ,pk)U

T where U ∈ Rn×k determines the placement and geometry of the
external dampers.

The main problem is to determine the best damping matrix that is able to minimize influence
of the disturbances, w, on the output of the system z. We use a minimization criteria based on the
H2 system norm. In realistic settings, damping optimization is a very demanding problem. We
find that the parametric model reduction approach described here offers a new tool with significant
advantages for the efficient optimization of damping in such problems.
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A Policy Iteration Algorithm for Pricing the Amer-
ican Option

E. Mageirou1, P. Vassalos1, N. Barakitis1

1Athens University of Economics and Business, Athens, Greece.

Abstract
The pricing of American option is a challenging problem especially for high dimensional cases,
since finite difference and binomial tree techniques become impractical in presence of multiple
factors (curse of dimensionality). Even in the one factor case, the problem is still challenging
since the value of the option is determined from the solution of Black-Scholes equation on the free
boundary condition (the optimal exercise boundary).

We present an alternative way for pricing American style options based on the policy iteration
dynamic programming algorithm which leads to monotonically increasing value functions. We
mention that a policy in an American option can be specified by an exercise boundary, the option
being exercised at the instance the underlying asset first reaches the boundary. Under reasonable
assumptions, we show that the algorithm converges quadratically, and we present a numerical im-
plementation which indeed exhibits fast convergence.
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Weighting Assessment of Vulnerability Index
Parameters of Reinforced Concrete Construc-
tions

Fatma Imene Belheouane1, Mahmoud Bensaibi2

1Department of Civil Engineering, University of SAAD DAHLAB (Blida1), Blida, Algeria, fimenebb@yahoo.fr
2GITRAMA, voie C zone Industrielle B.P 143 Rghaia, Alegria

Abstract
Seismic vulnerability assessment of reinforced concrete (RC) existing structures can performed
through the use of reliable tools this is in order to reduce damages in case of an earthquake event.

In this paper, a vulnerability index method has been applied to this type of building for the Al-
gerian case according to the national seismic regulations (RPA), by identifying the most important
parameters that have an influence on the seismic behavior of such structures. Weighting factors are
then assigned to each parameterin order to evaluate the vulnerability index, which allows classi-
fying each assessed structure according to a proposed classification. The weighting factors were
estimated by a dynamic analysis using ten seismic records. Lastly, this method was implemented
using developed numerical code and performed using several examples to show its efficiency.

Keywords: Vulnerability index, reinforced concrete construction, finite element, dynamic analysis,
earthquake, damage.
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Modeling and simulation of eddy current test-
ing of aeronautical tubes

S Bennoud1, M Zergoug2

1Laboratory of Aircrafts, University of Saad Dahlab, Blida 1, Blida, Algeria
2C.R.T.I (ex (CSC)), Cheraga, Algeria

Abstract
Eddy current testing can be used such as a perfect tool to characterize defects in materials. In
particular, on fields of advanced industry those require a maximal safety (aeronautics, aerospace,
nuclear...). However, the sensitivity of the characterization process is highly dependent on the probe
choice and the operation frequency.

In this context, it is necessary to identify and control cracks in metallic tubes used in aeronautic,
especially those prepared by aluminum.

Detection of axial cracks in tubes continues to be a major challenge in aeronautical studies. The
general idea is to provide a theoretical and computational framework for the efficient and approx-
imate treatment of three-dimensional electromagnetic problem, i.e. the simulation of cracks in the
presence of an eddy-current probe of arbitrary configuration.

To do this, equations of electromagnetic field on the surface of a conductor of cylindrical shape
are developed and then the FEM is applied to its solution.

The developed code has a graphical user interface and can be used for fast computation and
plotting of various impedance diagrams.
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Subspace iteration method for generalized sin-
gular values

A.H. Bentbib1, A. Kanber2, K. Lachhab3

1 a.bentbib@uca.ma
2 kanber@uca.ac.ma
3kamal.lachhab@ced.uca.ac.ma

Abstract
It’s well known that the Singular Values Decomposition (SVD) is useful in many applications such
as low rank approximation, data reductions, identification of the best approximation of the origi-
nal data points using fewer dimensions. It’s also a useful tool for computation of eigenvalues of
matrix ATA without explicitly forming the matrix product. The Generalized Singular Values De-
composition (GSVD) of the pair (A,B) is also a useful tool for computation of the generalized
eigenvalues of the symmectric pencil ATA − λBTB = 0. The generalized singular values of the
pair (A,B) are nothing but the square roots of generalized eigenvalues of the symmetric eigenprob-
lem ATA− λBTB = 0. We present available methods to compute the largest generalized singular
values and vectors using iterative subspace-like method. The new approach gives considerably bet-
ter efficiency compared to the matlab function . Numerical examples show the effectiveness of the
presented method.
Keywords: singular value, generalized singular values problem, matrix pair, power method, ...
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Metric regularity of composition multifunctions

Meriem Meddahi1

1University of Hassiba Benbouali, Departement of Mathematics, Chlef, Algeria.

Abstract
The aim of this paper is to give a metric regularity theorem for composition of set-valued mappings
between metric spaces involving a new concept of composition stability.

Keywords. Set-valued mapping, Metric regularity, Composition multifunction, Composition sta-
bility.

Mathematicas Subject Classification (2000). 90C25, 49M45, 65C25.
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Mathematical Structures defined by Identities
III

Constantin M. Petridi1

1cpetridi@math.uoa.gr
cpetridi@hotmail.com

Abstract
In this work we extend the theory (formal part only) of algebras with one binary operation [1],
to algebras with several operations of any arity. We briefly outlined our ideas of generalizing the
method of tableaux to algebras with several operations

V1(x1, x2, · · · , xa1), V2(x1, x2, · · · , xa2), · · · , Vk(x1, x2, · · · , xak)

satisfying axiomatically defined identities and indicated the way of how to proceed. The project is
now carried out. The technique applied is the same as in Formal Part of [1]. The crucial fact that
the number IV1V2...Vk

n of formally reducible identities can be calculated by exactly the same method
used for IV1

n (= In) seems to hold true. Algebras with only binary operations are discussed. For
algebras with two binary operations V (x, y) and W (x, y) the proof is given in detail. Algebras
with operations of any arity can be treated by reduction to a well defined set of algebras with binary
operations.

Research and exposition of the general theory are impeded by problems of construction and
inspection of the tableaux Tn whenever n is greater than 3. This is due to the fast growth of the

Catalan numbers (Sn ∼ 4n

π
1
2n

3
2

) and their generalizations, let alone problems of printing and pub-

lication. Programs designed to seek the structures resulting from a given identity failed after a few
steps (blow-ups). Exposition therefore is limited to illustrate the theory on the worked example of
tableau T3.

Still, the concrete new findings reached in this case corroborate further our fundamental the-
sis that there is a scarcity of existing mathematical structures in the sense that the frequency of
irreducible identities goes to zero with increasing n. Seen historically, this also explains why math-
ematics, in the course of time, has developed the way it did with associativity V (V (x, y), z) =
V (x, V (y, z)), the simplest structure, reigning supreme over the mathematical landscape. All other
essential mathematical structures, found or created by research such as e.g. Groups, Fields, Vector
Spaces, Lie Algebras, etc, ... include in their axiom system (signature) at least one binary operation
obeying the law of associativity. We conclude with a note on the connection with Formal Languages
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Implementation Techniques for Non-Symmetric
Real Toeplitz Systems by Preconditioned GM-
RES Method

Dimitrios Noutsos1, Grigorios Tachyridis2

1,2Department of Mathematics, University of Ioannina, GR45110 Ioannina, GREECE

Abstract
In this poster we show some implementation techniques of real non-symmetric and non-definite
Toeplitz systems Tn(f)x = b by Preconditioned Generalized Minimum Residual (PGMRES) method.
Toeplitz matrices have the same entries along their diagonals and are generated from the Fourier
coefficients of a 2π-periodic generating function or symbol f . Such systems appear in various
Mathematical Topics: Differential and Integral equations, Mechanics, Fluid Mechanics and in Ap-
plications: signal processing, image processing and restoration, time series, and queueing networks.

We follow the results of the paper presented by Noutsos in NASCA2018 conference to show
techniques of constructing efficient preconditioners, especially for illconditioned problems.

Moreover, we will present techniques of solving such systems by PGMRES method when the
generating function is unknown. We propose techniques of approximating f from the entries of
the Toeplitz matrix, using Fourier expansions or Rayleigh quotients. We present a procedure which
estimates the points where f has roots as well as the multiplicity of them. Taking this information
into account we construct efficient preconditioners.

The efficiency of the proposed techniques are shown by various numerical experiments.
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