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Abstract
We consider a parametric linear time invariant dynamical systems represented as

Eẋ(t) = A(p)x(t) +Bu(t),

y(t) = Cx(t),

where E,A(p) ∈ Rn×n, B ∈ Rn×m and C ∈ Rl×n. We assume that A(p) depends on k � n
parameters p = (p1, p2, . . . , pk) such that A(p) = A0 + U diag(p1, p2, . . . ,pk)V

T, where U, V ∈
Rn×k are given fixed matrices. Here x(t) ∈ Rn denotes the state variable, while u(t) ∈ Rm and
y(t) ∈ Rl represent, respectively, the inputs and outputs of the system.

We propose an approach for approximating the full-order transfer function H(s; p) = C(sE −
A(p))−1B with a reduced-order model that retains the structure of parametric dependence and (typ-
ically) offers uniformly high fidelity across the full parameter range. Remarkably, the proposed
reduction process removes the need for parameter sampling and thus does not depend on identi-
fying particular parameter values of interest. In our approach the Sherman-Morrison-Woodbury
formula allows us to construct a parameterized reduced order model from transfer functions of four
subsystems that do not depend on parameters. In this form one can apply well-established model
reduction techniques for non-parametric systems. The overall process is well suited for computa-
tionally efficient parameter optimization and the study of important system properties.

One of the main applications of our approach is for damping optimization: we consider a vibra-
tional system described by

Mq̈(t) + (Cint + Cext)q̇(t) +Kq(t) = Ew(t),
z(t) = Hq(t),

where the mass matrix, M , and stiffness matrix, K, are real, symmetric positive-definite matrices of
order n. Here, q(t) is a vector of displacements and rotations, while w(t) and z(t) represent, respec-
tively, the inputs (typically viewed as potentially disruptive) and outputs of the system. Damping
in the structure is modeled as viscous damping determined by Cint + Cext where Cint and Cext

represent contributions from internal and external damping, respectively. Information regarding
damper geometry and positioning as well as the corresponding damping viscosities are encoded in
Cext = Udiag(p1, p2, . . . ,pk)U

T where U ∈ Rn×k determines the placement and geometry of the
external dampers.

The main problem is to determine the best damping matrix that is able to minimize influence
of the disturbances, w, on the output of the system z. We use a minimization criteria based on the
H2 system norm. In realistic settings, damping optimization is a very demanding problem. We
find that the parametric model reduction approach described here offers a new tool with significant
advantages for the efficient optimization of damping in such problems.


