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Abstract

We consider the following abstract evolution problem

(1

uy — div(M (u)Vw) = 0,
w+ E' (u) — B, (u) + e2Au € dlg(u),

where M, E, , E_ : S — R with M(u) > 0 and F convex, S C R is convex (but not necessarily
compact). The indicator function Is(u) is equal to 0 if v € S and oo otherwise, whereas the set-
valued function 0Ig(u) is its subdifferential. Note in particular that (1) implies u(x) € S almost
everywhere. A number of interesting problems can be cast in this framework:

e Cahn-Hilliard: M(u) =1, E_(u) = %, E,(u) = % and S = R,

o Thin films [1]: M(u) = “;, E_(u)=0,Ei(u)=0and S = [0, 00),

e Deep quench obstacle problem [2]: M(u) = 1 — u? (degenerate) or M (u) = 1 (non-

degenerate), E_(u) = %, Ei(u)=0and S =[-1,1].

Combining F(u) = E; (u) — E_(u) (convex-concave splitting) allows us to associate a free energy
Jo E(u)dz + %HVUH%Q with each concrete problem. Our scheme is a reformulation of a semi-
implicit FEM scheme introduced in [3] and based on an approximation introduced in [4]. We recast
the scheme as a (discrete) convex optimization problem with convex constraints at each time step,
and derive a set of relaxation operators that are guaranteed to preserve the total mass and the hard
constraint u € S, while reducing the free energy. Furthermore the operators are locally supported
and can be applied in parallel, allowing for a highly efficient implementation on modern computer
hardware (GPU acceleration). Finally, we discuss the connection of this scheme to a recent study
of these type of problems as gradient flows in weighted-Wasserstein metrics [5].
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