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Abstract
We consider the following abstract evolution problem{

ut − div(M(u)∇w) = 0,

w + E′−(u)− E′+(u) + ε2∆u ∈ ∂IS(u),
(1)

where M,E+, E− : S → R with M(u) ≥ 0 and E± convex, S ⊂ R is convex (but not necessarily
compact). The indicator function IS(u) is equal to 0 if u ∈ S and∞ otherwise, whereas the set-
valued function ∂IS(u) is its subdifferential. Note in particular that (1) implies u(x) ∈ S almost
everywhere. A number of interesting problems can be cast in this framework:
• Cahn-Hilliard: M(u) = 1, E−(u) = u2

2 , E+(u) = u4

4 and S = R,

• Thin films [1]: M(u) = u3

3 , E−(u) = 0, E+(u) = 0 and S = [0,∞),
• Deep quench obstacle problem [2]: M(u) = 1 − u2 (degenerate) or M(u) = 1 (non-

degenerate), E−(u) = u2

2 , E+(u) = 0 and S = [−1, 1].
CombiningE(u) = E+(u)−E−(u) (convex-concave splitting) allows us to associate a free energy∫

ΩE(u) dx + ε2

2 ‖∇u‖
2
L2 with each concrete problem. Our scheme is a reformulation of a semi-

implicit FEM scheme introduced in [3] and based on an approximation introduced in [4]. We recast
the scheme as a (discrete) convex optimization problem with convex constraints at each time step,
and derive a set of relaxation operators that are guaranteed to preserve the total mass and the hard
constraint u ∈ S, while reducing the free energy. Furthermore the operators are locally supported
and can be applied in parallel, allowing for a highly efficient implementation on modern computer
hardware (GPU acceleration). Finally, we discuss the connection of this scheme to a recent study
of these type of problems as gradient flows in weighted-Wasserstein metrics [5].
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